521-S/W-058
PCI10FR Windows NT Device Driver
Software Definition Document

March 1997

Prepared by:

Miles T. Smith, Electrical Engineer Date
Microelectronic Systems Branch
Code 521, NASA/GSFC

Approved by:

Barbara E. Brown, Computer Engineer Date
Microelectronic Systems Branch
Code 521, NASA/GSFC

Approved by:

Nicholas J. Speciale, Head Date
Microelectronic Systems Branch
Code 521, NASA/GSFC

Goddard Space Flight Center
Greenbelt, Maryland

Vi

Preface

This document describes the software design and implementation of the Windows NT PCI10FR
Device Driver and PCI 10FR Wrapper Application Program Interface (API).

Requests for copies of this document, along with questions or proposed changes, should be
addressed to:

L. Kane, Sr. Documentation Specialist [(301) 286-8609 or (301) 286-1768 FAX]
Microelectronic Systems Branch, Code 520.9

Goddard Space Flight Center

Greenbelt, Maryland 20771

Vi

Change Information Page

List of Effective Pages

Page Number Issue
Title Draft
Signature Page Draft
iii through viii Draft
1-1 through 1-7 Draft
2-1 through 2-6 Draft
3-1 through 3-25 Draft
4-1 through 4-7 Draft
5-1 through 5-6 Draft
6-1 and 6-2 Dratft
Draft

Document History

Document Status/Issue Publication Date CCR Number
Number

Vi

521-S/W-058

Draft

March 1997

Vi

DCN Control Sheet

DCN
Number

Date/Time
Group
(Teletype
Only)

Month/Year

Section(s)
Affected

Initials

Vi

Vi

TABLE OF CONTENTS

Section 1: General Information

11

1.2
1.3

14
15

General DESCIIPLiON. ...t 1-1
1.1.1 Purpose of DOCUMENT........ccuiiiiii e 1-1
1.1.2 Scope Of DOCUMEBNL.cuiuiti i e 1-1
1.1.3 Background........ooiiiii 1-1
PrimMary FUNCHIONS. e e e eaaeneas 1-2
PCI10FR Board and Operational SCeNarioScuvveiriitiie i i aaaaes 1-2
1.3.1 Telemetry Input SUDSYStEM........ccviiniiii e 1-3
1.3.2 Forward Link Output SUBSYStemo 1-3
1.3.3 Board Support SUDSYSEEM.......c.iiiiii e 1-3
Document Organi ZatiON...........euie e e e e 1-5
RefErenCe DOCUMENTS. ... u e 1-5

Section 2: Functional Description

2.1

2.2

Functional SpecificationsS/RequUIremMeNtsS..........c.evuiiiiiiiiiiiie e 2-1
2.1.1 PUurpose of DOCUMEBNL.ottt eaas 2-1
2.1.2 Functional Requirements for the PCI10FR Device Driver........ccccceeeeiiieeiennnns 2-1
(O70] 0] 1=> o DX =Sox g I 1§ o] 1A 2-2
2.2.1 Context Description for the PCIL0FR Wrapper APlccccoooviiiiiiiiiiiieinnnn. 2-2
2.2.2 Context Description for the PCI10FR Device Driver.........cccoeevevvviiieeeennnnnnn. 2-2
CoNteXt MOUEI ... e 2-2
Data FIOW Diagrams.c.ouiiiii i e 2-4
Process SPeCIfiCaliONS......cuiiii it 2-4
Hardware Control POINES.o 2-4

Section 3: Design Description

31
3.2
3.3

3.4
3.6

3.7

TaSK MOGE ... e 3-1
Design Assumptions/DePendenCiEs.ocuuiuuiiuiiiiiiiiieee e 3-2
Device Driver Wrapper APl 3-2
3.3.1 OpenDataChannel FUNCLION............ovuiiiiiiii e 3-5

3.3.1.1 OpenDataChannel Function Arguments.............cccceeevernneeennnneennnn 3-5

3.3.1.2 OpenDataChannel Function Return Values..............ccccuuivieiiinnnnnne. 3-6

3.3.1.3 OpenDataChannel Function Algorithm..............ccooiiiiiiiiininnnnnn. 3-6

3.3.1.4 ReadDataChannel Thread Algorithm ..., 3-7
3.3.2 FlushDataChannels FUNCLION...........ocieiiiiii e 3-8
3.3.3 CloseDataChannels FUNCLION..........cooiiiiiiii e 3-8
Device Drver Data SIIUCIUNESt ettt et e e aens 3-9
Device Driver Loading and Initialization Task............cccoeiiiiiiiiiiiiieeee, 3-10
Device Driver Board [/0 Task......cociiiiiiiii e 3-13
3.6.1 Reading PCl Configuration RegiSters..........c.oviiuiiiiiiiiiiiiiieeeeeeieeis 3-13
3.6.2 Writing PCI Configuration RegiSterS.........ccuuviuniiiiiiiiiiiiieeeieeieeeie e 3-13
3.6.3 Reading Board Memory LOCAtIONS........cc.iiuuiiiiiieiieiieeeeeie e e 3-14
3.6.4 Writing Board Memory LOCAONSoovvviiiiiiiiiiic e 3-14
Device Driver Dispatch IOCTL Commands Tasks...........coovvveiiiiiiiiiiiiiiciiiiieeeees 3-15
3.7.1 TOCTL Read COMMANGS......c.iuiinitiinaiiii e ee e e 3-17
3.7.2 TOCTL Write COMMANASeeieieee et ae e 3-17
3.7.3 10OCTL Open Data Channel Commands............cc.ovveuiiiiniiiiniiiiieiieeeiens 3-18
3.7.4 10CTL Fluch Data Channel Commands............cccovviviiiiniiiineeiineeiieeennn 3-19
3.7.5 I0OCTL Close Data Channel Commands.............ccuuveerniiiiinieiineiiineeiineeenns 3-19

Vi

TABLE OF CONTENTS (CONT’'D)

3.8 Device Driver Interrupt SErvices TasK.......cociveeiiieiiiiiiei e eea e 3-22
381 1Al PRaASE. ... i 3-22
3.8.2 FIFO Service ISR PRaSE........ciuiiiiiii e 3-22
3.8.3 DMA Transfer DPC Phase....... ..o 3-23
3.8.4 DMA Engine Service ISR Phase.........ccccoiviiiiiiiiiiiiiiieeeee e, 3-23
3.8.5 DMA CompleteDPC 3-23

3.9 DeviceDriver Unloading TasKovieiiie i 3-25

3.10 DeviceDriver Error Handlingccoviiiiiiii e 3-25

Section 4: Implementation Data

4.1 Coding and Naming CONVENTIONS.cuuieuiiiiiiiie e e 4-1

4.2 FIlE DESTITPIONSttt et et 4-1
4.2.1 File Descriptions for the PCI10FR Wrapper APl ... 4-1
4.2.2 File Descriptions for the PCI10FR Device DIiVer...........ceeiieiieeeeeiiiiiieiiiiinns 4-2
4.2.3 File Descriptions for the PCI10FR Debugger Application............ccccceeeeennnn. 4-2

4.3 Building the DeVICE DITVErccuiii e 4-4

4.4 Registering the DeVICE DITVEr ... 4-6

4.5 Building the Device Driver Wrapper APl and Debugger.............cooovvviiiiiiiiiiiiinnnnns 4-6

4.6 Error Code DefiNitiONSiueei et 4-7

Section 5: Development |ssues

5.1 HarOWaIC ISSUBSttt ettt et ettt 5-1
5.1.1 V962PBC PCI Bridge Chip ReVISIONS.........cccuiiiiiiieiieiieeieeeeeeee e 5-1
5.1.2 Short PCI Clock Signal TraCe..........ceuuiuiiiiiiiieiie e ee e 5-1
5.1.3 FIFO OVeITIOW. ..iiiiiii e 5-1
5.1.4 Local Bus CPU-EmMuUIation PLD’ S........ccuiiiiiiiiiiiiiiiceee e 5-1
5.1.5 Gateway 2000 Ultra-SCSI Disk Problem...........cccooiviiiiiiiiiiiee 5-1

5.2 SOMWAIE ISSUES ...ttt e 5-2
5.2.1 Porting the PCI10FR Device Driver to WindowsSNT 4.0cccevvvvvinnnnnnn. 5-2
5.2.2 Processing Weather Data Formats in the PIFS Chip.........cccccceeiviievvviiinen. 5-2

53 Windows NT PerformanCe ISSUES.c..viuiiiiiiniiiiiiie e 5-2

Section 6: Testing and Debugging

B.1 TSt DS P ON. .ttt e e 6-1
B.2 TSt Bl O BNES. i e 6-1
.3 RBSUITS. e 6-1

Appendix: A - PCI10FR Debugger User’s Guide

Appendix: B - PCI10FR: Programming the FIFO Flags

Appendix: C - CMOSFIFO Specifications

Appendix: D - Dual Programmable Clock Generator Specifications

Appendix: E - Dual Programmable Clock Generator Application Note
Appendix: F -DS1620 Digital Thermometer and Thermostat Specifications
Appendix: G - DS1620 Digital Thermometer and Thermostat Application Note
Appendix: H - Atmel Serial EEPROM Specifications

Appendix: | - V962PBC Stepping Change Notifications

Vii

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

TRPWWWWWWN

AONRROTARNR R R

LR

3-1

3-1
4-1
5-1
5-2

TABLE OF CONTENTS (CONT’'D)

FIGURES
PCI10FR Prototype Board Functional Block Diagram............cccceveeveeiinieniiinnnenens 1-3
PCI10FR Wrapper API and Device Driver Context Model Diagramcccevvevenen. 2-3
Level 1 DFD/Task Model for the PCI10FR Device Driver........ccccceeieeeeeeeiieeeeiiiinnnns 3-1
Load and Initialize Device Driver TaSK........coouuieiiieiiiiiieeeeee e 3-10
BOArd [70 TaskK.....cooiiiii e 3-13
Dispatch IOCTL Commands TasK.........c.viuiiiiiiiieie e 3-16
INEEITUPE SEIVICES TaSK. . ..t eae 3-21
Unload DeViCe DIiVEr TaSK.......uiuiieiie et e e e aeaes 3-24
BUIld DITECIOrY SErUCTUIE. ... et 4-4
Performance Test Setup for Programmed [/O Data Transfersooovvviiiiiiiininnnnss 5-3
Data Transfer Timing Diagram Using Programmed 1/O.............ccccvvviiiiiiiiiiiinnnnn. 5-3
Performance Test Setup for DMA Data Transfers............ovveeieeiiiiiieiieeiiiieeeeeeens 5-4
Data Transfer Timing Diagram USINg DMA ... 5-5
TABLES
Return Values From The OpenDataChannel Function............ccccooovvviiiiiiiiiineeeeen, 3-6
PCI10FR Wrapper APl and Device Driver Context Model Diagramcccevvevnnns 2-3
Level 1 DFD/Task Model for the PCI10FR DeVvice DriVer.........ccuvvvviiiiiiiiiiiiiinnnnnnn. 3-1
Standard Windows NT StatuS/Error COUES.........oceuuviiiiieiiiieiiii e e e 4-7
Performance Test Results Using Programmed 1/O..........c.cocoiiiviiiiiviiii e, 5-4
Performance Test Results USINg DMA ... 5-54

viii

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Section 1. General Information

1.1 General Description

1.1.1 Purpose of Document

This document describes the requirements, design and implementation of the Microsoft Windows
NT 3.51 kernel-mode device driver and wrapper functions for the Peripheral Component
Interconnect (PCl) 10 Mbps Frame Synchronization Reed-Solomon Error Detection and Correction
board, also known as the PCI10FR Prototype Board.

The PCI10FR Prototype Board was developed by the Mission Operations and Data Systems
Directorate Microelectronic Systems Branch, Code 521, at Goddard Space Flight Center (GSFC).
The project was funded by the System Operation and Management Office (SOMO).

1.1.2 Scope of Document

This Software Definition Document (SDD) primary focuses on the design and implementation of
the PCI10FR Device Driver and the PCI10FR Wrapper Application Program Interface (API)
programs. A complete hardware description of the PCI10FR Prototype Board is not provided in
this document, but thisinformation is available in the PCI10FR Hardware Definition Document
listed in Section 1.5. The SDD describes the PCI10FR Prototype Board hardware only to the
extent necessary to understand the interface between the driver and board. Similarly, information
about the PCI10FR Debugger application software is described in this document only to the extent
necessary to understand the PCI10FR Wrapper API, which provides a consistent gpplication
interface to the device driver.

Although some background information is provided, this document is not a tutorid on the
Microsoft Windows NT 3.51 operating system or on Windows NT device driver development.
The Win32 Device Driver Kit (DDK) documents listed in Section 1.5 provide details on devel oping
Windows NT device drivers.

1.1.3 Background

The Microelectronic Systems Branch (Code 521) has been designing and implementing state-of -
the-art high-rate telemetry processing Very Large Scale Integration (VLSI) Application-Specific
Integrated Circuits (ASIC’s) and boards for many years. Most of these boards communicate over
aVME bus and use the VxWorks real-time operating system kernel. In an effort to significantly
reduce the size and cost of telemetry processing technology, Code 521 has developed a new
telemetry processing prototype board that uses the Peripheral Component Interconnect (PCI) bus
technology, requires no on-board Centra Processing Unit (CPU), and operates under the
Microsoft Windows NT 3.51 operating system on low-cost Personal Computer platforms, such as
Pentium-Pro systems.

The new prototype board, known as the PCI 10FR Prototype Board, combines all of the front-end
telemetry processing functions. Specifically, the board performs the following tasks:

1-1

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

a. Recept of return link telemetry data up to 10 Mbps via RS-422 bit-seria telemetry
streams..

b. Frame synchronization and CRC error detection of telemetry datain avariety of formats:
Time Divison Multiplexed (TDM) data, Consultative Committee for Space Data Systems
(CCSDY) data, and the National Oceanic and Atmospherics Administration (NOAA) and
Geogtationary Orbiting Earth Satellite (GOES) weather data formats

C. Reed-Solomon (RS) error detection and correction of RS-encoded data.
d. Generation of quality, timing, and accounting annotation.

e. Distribution and sorting of up to four virtual channelsinto separate First-In First-Out
(FIFO) queues.

f. Transmission of spacecraft forward link command data up to 1 Mbps.

Getting all of these functions on one board was made possible by Code 521’ s recent devel opment
of aParallel Integrated Frame Synchronizer (PIFS) ASIC, which is capable of handling data rates
up to 528 Mbps. The PCI10FR Prototype Board, which isthe first board to incorporate the new
PIFS chip, also uses Code 521’ s proven Reed-Solomon Error Correction (RSEC) ASIC.

Code 521 has developed anew ASIC, called the Service Processor (SP) chip, which will provide
frame and packet servicesfor CCSDS data. This chip, along with the PIFS and RSEC chips, will
be used on the next generation Return Link Processor Card (RLPC). The RLPC will be capable of
handling data rates up to 50 Mbps on a PC, and up to 150 Mbps on a Dec Alpha workstation.

1.2 Primary Functions

Under Windows NT, a user-mode application cannot “talk” directly to hardware, but must
communicate with the hardware through a kernel-mode driver. The primary function of the
PCI10FR Wrapper API isto provide a consistent APl to a user-mode application for getting
PCI10FR Prototype Board status and for configuring the PCI10FR Prototype Board chips and
registers. The primary functions of the PCI10FR Device Driver are to provide the PCI10FR
Wrapper APl with the ability to read and write to any board memory location, to perform DMA
transfers of return link telemetry data from the board to the host memory, and to transfer forward
link command data from the host memory to the board. These functions are discussed in detail in
Section 2 of this document, and the implementation of these functionsis discussed in Section 3.

1.3 PCI10FR Board and Operational Scenarios

As shown in Figure 1-1, the PCI10FR Prototype Board consists of three main subsystems: the
Telemetry Input Subsystem, the Forward Link Output Subsystem, and the Board Support
Subsystem. Each of these subsystems is described below. Additional details about the board and
its memory map can be found in the PCI10FR Hardware Description Document referenced in
Section 1.5.

1-2

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Forward Link Output
Boar r
RS-422 Output Subsystem oard Support
Subsystem
Parallel-t TR
Status Board Chl:::/‘nﬁg Flash Interrupt CPU
Registers Control Memory EPROM PLD Emulator
Registers 1oexxaz | ||r28cx32 PLD's
Status & Control Status & Control Programmable Flag &
Test Control
RS-422 Output
A
0 Serial Boot
EEPROM
—— 4 Data FIFO 4
y A— —
n V962PBC
4K x 16 FIF Reed-
|/ Parallel x16FFO aheed n ——"| Pcrisso
- Integrated A Error be L Data FIFO 2 Bridge Chip
0 Frame Detection/ u
Synchronizer o Ll (ot
Reed-
Solomon
| Telemetry Input [Routing Table
RS-422 Input Subsystem
i960 Local Bus PCl Bus

Figure 1-1. PCI10FR Prototype Board Functional Block Diagram

1.3.1 Telemetry Input Subsystem

The Telemetry Input Subsystem provides an RS-422 input port for return link telemetry data and
clock signals originating from abit synchronizer. The data and clock signals are fed into the PIFS
chip which performs frame synchronization, Pseudo-Noise (PN) decoding, and CRC error
detection. Quality and time stamp annotation may be optionally added to the data stream, which
can then be output from the PIFS chip in either 8-bit or 16-bit words. The datais then buffered by
a4-Kbyte x 16-bit FIFO and fed into the RSEC chip.

The RSEC chip can operate in pass-through mode, to accommodate non-RS-encoded data, or it
can perform Reed-Solomon error detection and correction of the data. Quality annotation may be
optionally added to the data stream. The RSEC chip provides the capability of outputting the entire
data stream, outputting any subset of the data stream, and moving the PIFS quality, RSEC quality,
and time annotation to the either the front or rear of the data stream. The RSEC then looks at
specific, user-defined contiguous 16-bit fields within the data stream, and uses the values in these
fields as an index into a 64-Kbyte RS Routing Table containing information as to which of the four
32-Kbyte x 32-bit FIFO banks should receive the data stream. The RS Routing Table can route the
entire data stream to any one or more of the FIFO’s, or more commonly, it can route the entire data
stream to one FIFO for a composite data stream, and route specific virtual channels to the other
three FIFO's.

Four 32-Kbyte x 32-bit FIFO banks are provided on the PCI10FR Prototype Board. Each bank
actually consists of four 8-Kbyte x 8-bit FIFO's. Two Stacker programmable logic devices
(PLD’s) are used to take the 8-bit output of the RSEC and stack these bytes into the four 8-bit
FIFO’'s. This method effectively queues the data in 32-bit words that maximize efficient DMA
transfer across the 32-bit PCI bus. Each of the FIFO’s has programmable amost-empty and
almost-full flags. When the ailmost-full flag is asserted, an interrupt is generated by the PCI10FR

1-3

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Prototype Board and the PCI10FR device driver’sinterrupt service routine (ISR) iscalled. The
device driver setsup a DMA operation to move data from the FIFO to host memory. The
composite data stream is generally archived to disk, and the real-time data stream is transmitted
over the network to the end-user. Section 3 of this document will provide design and
implementation details concerning the device driver's interrupt service routine and DMA
operations.

1.3.2 Forward Link Output Subsystem

Command datais received by the host computer over the network from the end-user. The device
driver transmits this command data stream across the PCI bus and buffersit in a 4-Kbyte x 8-bit
forward link FIFO. A parallel-to-serial (P2S) PLD is used to convert the 8-bit parallel command
data stream into a serial stream, which is then output through an RS-422 port. A programmable
Numerically-Controlled Oscillator (NCO) chip is used to generate the clock signal to clock the
command data stream out a specific rate. An external clock signal may also be used instead of the
NCO clock signal. The device driver contains routines that support forward link output, but this
function of the PCI10FR Prototype Board has not been fully implemented or tested.

1.3.3 Board Support Subsystem

The Board Support Subsystem (BSS) includes several chips that are critical for the board to work,
and some chipsthat really do not add any identified value. The most important BSS component is
the V962 PCI Bridge Chip (V962PBC), produced by the V3 Semiconductor, Inc. This chip
provides a bridge between the 1960 local bus on the board and the PCI bus. It contains all of the
important PCI configuration registers that allow the board to be recognized as a PCl device. The
V962PBC chip provides registers for base memory addresses and interrupt configuration, as well
as providing two DMA engines. All reads and writes to the PCI10FR Prototype Board, DMA
operations, and interrupts are performed through this chip. Section 1.5 lists the reference
document for this chip, as well as severa references on PCI bus architecture.

When the host computer is booted, PCI configuration information is serially downloaded into the
V962PBC chip through an on-board Serial Boot Electrically-Erasable Programmable Read-Only
Memory (EEPROM) chip. This EEPROM chip, aswell as all of the PLD’s on the board, are all
progranmed at production time and soldered on the board. All of these chips can be
reprogrammed on-board if needed.

A Temperature chip has been provided on the board to monitor the board temperature. Thischipis
not necessary for operation of the board.

There are three board Status Registers that provide information about the FIFO programmable flag
status, and are used to read the temperature from the Temperature chip. These registers are queried
during the ISR to determine which FIFO or FIFO’ srequire servicing.

ThereisaMain Control Register that resets the PIFS chip, RS chip, and all of the FIFO’s. The
Main Control Register also sets the stacking order (big-endian or little-endian) and stacking mode
(packed frames or padded frames) for the two Stacker PLD’s, and it is used to program the NCO
clock frequencies. This register, along with a Miscellaneous Control Register, provide for
masking of specific board interrupts. The Miscellaneous Control Register isalso used to send

1-4

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

commands and programming information to the Temperature chip, and to toggle four software
definable bits which connect to test points on the board. These test points have been invaluablein
measuring interrupt and deferred procedure call (DPC) latencies using alogic analyzer.

A Programmable Flag/Test Data Register is provided to program the FIFO flags. The PIFS and
RSEC chip registers al have their own address space and can be accessed directly, as can the four
return link data FIFO’ s and one forward link command FIFO. The PCI10FR Prototype Board
contains 128 Kbytes of Random Access Memory (RAM) that can be used for DMA chaining
(scatter-gather). Unfortunately, the current revision (Revision B2) of the V962PBC chip does not
support DMA chaining. The next revision, Revision CO, will support this feature.

The PCI10FR Prototype Board has a number of PLD’s used for emulating alocal bus CPU.
These PLD’ s provide al of the chip select and acknowledge signals on the local bus. Thereisaso
an Interrupt PLD that allows the interrupt signals on the local bus to be masked, depending on the
contents of the Main Control Register and Miscellaneous Control Register. Finally, the PCI10FR
Prototype Board has 128 Kbytes of Flash EEPROM, which is not used for anything.

1.4 Document Organization

Section 1 of this document provides an overview of the PCI10FR Prototype Board and the device
driver. Section 2 describes the functional requirements and context of the PCI10FR Device Driver
and the PCI10FR Wrapper API. Section 3 describes how the device driver is designed to perform
its tasks. Section 4 provides implementation information and details on how to build the software.
Section 5 addresses devel opment issues that were identified during the course of the project.
Section 6 describes testing and debugging of the PCI10FR Device Driver. Appendix A providesa
brief user’s guide to the PCI10FR Debugger application. Numerous other appendices, listed in the
table of contents, provide specification sheets and other internal information that may be difficult to
find otherwise. Finally, avery necessary list of acronyms and abbreviationsis provided at the end
of this document.

1.5 Reference Documents

a. PCI 10-Mbps Frame Synchronization Reed-Solomon Error Detection and Correction
(EDC) Card Preliminary Design Review, March 1, 1996, Code 521, NASA/GSFC.

b. PCI 10-Mbps Frame Synchronization Reed-Solomon EDC Card Critical Design Review,
April 18, 1996, Code 521, NASA/GSFC.

c. PCI10FR Hardware Definition Document, Early Draft, April 25, 1996, Code 521,
NASA/GSFC.

d. Paralle Integrated Frame Synchronizer Chip, 521-ASIC-023, December 1996, Code
521, NASA/GSFC.

e. “Reed-Solomon Error Correction Chip”, Section 10, Microelectronic Systems Branch
Application-Secific Integrated Circuits (ASC) Components Document, Volume 1, 521-
SPEC-002, Revision 1, August 1995, Code 521, NASA/GSFC.

1-5

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

f. CMOSSyncFIFO IDT72241, DSC-2655/6, December 1995, Integrated Device
Technology, Inc..

PCI10FR: Programming the FIFO Flags, Email from Ken Winiecki, July 19, 1996.

DS1620 Digital Thermometer and Thermostat, DS1620, 1995, Dallas Semiconductor
Corporation.

i. Application Note 105 —High Resolution Temperature Measurement with Dallas Direct-
to-Digital Temperature Sensors, Application Note 105, 1995, Dallas Semiconductor
Corporation.

j. Dual Programmable Clock Generator, CH9203, Rev. 1.7, February 21, 1995, Chrontel,
Inc.

k. Using CH9203 in Multiple Speed CD-ROM Drive, AN-12 Application Notes, Rev. 1.2,
February 21, 1996, Chrontel, Inc.

| 2-Wire Serial CMOSE’PROMSs, AT24C01A/2/4/8/16, Atmel, Inc.

m. VxxXxPBC User’s Manual: Local Busto PCI Bridge for 1960, Am29K and Power PC
Processors, Rev. 2.0, 1996, V3 Semiconductor, Inc.

n. V292PBC, V960PBC, V961PBC, V962PBC Sepping Change Notification: ‘B-0° Step
to ‘B-1' Sep, V3 Technical Note, Rev. 2.2, February 13, 1996, V3 Semiconductor, Inc.

0. Sepping Change Notification: PBC ‘Bl Septo ‘B2° Sep, V3 Technical Note, Rev.
3.2, August 9, 1996, V3 Semiconductor, Inc.

p. Win32 DDK: Programmer’s Guide, Microsoft Development Library, 1992-1995,
Microsoft Corporation.

g. Win32 DDK: Kernel-Mode Driver Design Guide, Microsoft Development Library, 1992-
1995, Microsoft Corporation.

r. Win32 DDK: Kernel-Mode Driver Reference Document, Microsoft Development
Library, 1992-1995, Microsoft Corporation.

s. Inside Windows NT, Helen Custer, Microsoft Press, 1993.

t. Advanced Windows: The Developer’s Guide to the Win32 API for Windows NT 3.5 and
Windows 95, Jeffrey Richter, Microsoft Press, 1995.

u. TheWindows NT Device Driver Book, Art Baker, Prentice Hall PTR, 1997.

v. Developing Windows NT Kernel Mode Drivers, Windows NT Device Driver Course
Textbook, Open System Resources, Inc., 1996.

w. PCI System Architecture, Third Edition, Tom Shanley and Don Anderson, MindShare,
Inc., 1995.

X. PCI Hardware and Software Architecture and Design, Third Edition, Edward Solari and
George Willse, Annabooks, 1996.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

y. Software and Automation Systems Branch C++ Style Guide, DSTL-96-011, Version
2.0, June 1996, Software and Automation Systems Branch (Code 522), NASA Goddard
Space Flight Center.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Section 2. Functional Description

2.1 Functional Specifications/Requirements

2.1.1 Functional Requirements for the PCI10FR Wrapper API

The PCI10FR Prototype Board can run on any hardware platform supporting Version 2.1 of the
PCI bus standard. Since an application that needs to communicate with the board may be running
under avariety of operating systems, a decision was made to create a PClI 10FR Wrapper API that
would provide a well-documented and consistent PCI10FR Device Driver interface to an
application, regardiess of the operating system. This eliminates the need to change the application
software when porting from one operating system to another. Obviously, the PCI10FR Device
Driver and the interface between the PCI10FR Wrapper API and the device driver would need to
be rewritten for each operating system, but at least this layered approach minimizes the amount of
re-coding.

As discussed above, the main functional requirements for the PCI10FR Wrapper API include:
a Encapsulating all operating system-specific |nput/Output Control (IOCTL) calls.
b. Providing an application with a consistent, operating system-independent interface to the
PCI10FR Device Driver.
2.1.2 Functional Requirements for the PCI10FR Device Driver
The main functional requirements for the PCI10FR Device Driver include:
a. Probing the PCI busto determine if a PCI10FR Prototype Board has been installed.

b. Creating a device object for the PCI10FR Prototype Board and allocating memory and
interrupt resources.

C. Resetting and initiaizing the board in a known safe state.

d. Providing routinesto dispatch I/O control (IOCTL) calls from the user-mode application
to the appropriate kernel-mode routines.

e. Providing the user-mode application with the capability to read from and write to any
board memory location.

f. Providing the user-mode application with the capability to read from and write to any PCI
configuration space register on the board. This capability isvery useful in debugging the
board, but it generally should not be made available to an operator. The valuesin the PCI
configuration space are critical for the proper and efficient operation of the board. Writing
improper valuesin this space will cause system crashes and board failure This version of
the PCI10FR Device Driver does not implement any PCI configuration write IOCTL
commands.

2-1

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

g. Providing an ISR to handle any interrupts that may originate from the board, and to call
appropriate DPC’ s to complete servicing of interrupts.

h. Providing DMA capabilities to move telemetry data from the board’ s FIFO’ sto host
memory.

i. Unloading the driver and freeing al allocated resources upon demand.

2.2 Context Description

2.2.1 Context Description for the PCIL0FR Wrapper API

Figure 2-1 shows a context model for the PCI10FR Wrapper API. The Wrapper APl has two
software interfaces. oneinterface to the application, and a second interface to the PCI10FR Device
Driver. Asmentioned in Section 2.1.1, the interface to the application is fixed. The interface to
the PCI10FR Device Driver, however, will change depending on the operating system. This SDD
describes the application interface and the Microsoft Windows NT-specific device driver interface.

2.2.2 Context Description for the PCILOFR Device Driver

Figure 2-1 a so shows a context model for the PCI10FR Device Driver. The device driver hastwo
interfaces. one software interface to the PCI10FR Wrapper APl running in user-mode, and a
second interface to the PCI10FR Prototype Board viathe PCI bus.

2.3 Context Model

The context model for the PCI10FR Wrapper APl and the PCI10FR Device Driver is shown in
Figure 2-1.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

User-Mode
Application
Global
dataChannel[4]
Structures \
Wrapper Wrapper
Function Function @
Arguments Return Value Return Lin > N
dataChannel Data \ ~—)
Information
B Global Return Link Disk storage
-y PCI1OFR Retg;:aLmk_ Data Channel
- o Wrapper AP Circular Buffer
Eyen‘ts 1OCTL OCTL DMA)
7 Commands and Responses and Return Link
s Parameters Parameters Data

Windows NT IO Manager

i [\

T
1/0 Request I

\ Packet and vostaws Kernel-Mode
N Parameters and Parameters
E{/ents \
"'\._.
- "~ 0--_
—
System-Wide PCI10FR

DPC FIFO Queue Device Drivgr

_—
Board Memory Board Memory
Read Value 5 Write Value DMA
3 Return Link
DPC Objects Interrupts Data
i
DPC :“
Objects
Windows NT Kernel
and
Hardware Abstraction Layer (HAL)
1 1 H [
Board Memory DMA Interrupts Board Memory

Read Value Return Link i Write Value
Data i

PCI Bus

Return Link Da tam—

——Return Link Datajp] L Return Link Clocke—__)
PCI10OFR Prototype Board
—Return Link Clock]

Forward Link Command Data—p

Forward Link Command Clock—

Figure 2-1. PCI10FR Wrapper APl and Device Driver Context Model
Diagram

2-3

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

2.4 Data Flow Diagrams

Since this document was written after the driver software had aready been designed, implemented
and tested, the Data Flow Diagrams (DFD’s) of the PCI10FR Device Driver are aready partitioned
into tasks. They are equivalent to the task models described in Section 3. Therefore, rather than
present the DFD’ s in this section and repeat the information in Section 3, al discussions of DFD’s
and task models are located in Section 3.

2.5 Process Specifications
The process specifications for the DFD’ s are presented in Section 3 with the DFD’s.

2.6 Hardware Control Points

The PCI10FR Device Driver monitors and controls all hardware on the PCI10FR Prototype Board.
The device driver provides generic functions of reading and writing to all board memory and PCI
configuration space locations. The PCI10FR Wrapper Functions provide a consistent API for
user-mode applications to call the device driver’s generic functions. The user-mode application is
responsible for determining and writing the correct values into the board and chip registers.

A detailed memory map and description of all PCI10FR Prototype Board registers and memory
locations is contained in the PCI10FR Hardware Definition Document. The hardware control
points that the device driver must interface with are listed below:

a V962PBC: Thischip contains 61 PCI configuration space registers. The serial EEPROM
on the PCI10FR Prototype Board |oads these registers with default values at boot-up, but
some of the registers, such asthe PCI Interrupt Status, PCI Interrupt Configuration, and
the DMA registers must be accessed alot in the ISR and the DPC routines. All of the
registers are completely defined in the VxooxPBC User’s Manual referenced in Section
1.5.

b. PCI10FR Board Registers: There are five primary board control and status registers on
the PCI10FR Prototype Board: the Board Control Register, Status Register 0, Status
Register 1, Status Register 2, and the Miscellaneous Control Register. These registersare
documented in the PCI10FR Hardwar e Definition Document referenced in Section 1.5.

c. Programmable FIFO Flag Register: Thisregister isused to program the programmable
FIFO flags on the four data FIFO’ s and the one forward link FIFO. Thisregister is
documented in the PCI10FR Hardwar e Definition Document referenced in Section 1.5.
Information on programming the programmable FIFO flag registers can be found in and
email message entitled, PCI10FR: Programming the FIFO Flags. A copy of this email
message isin Appendix B of this document.

d. PIFSChip: Thereare 32 internal PIFS Chip registers. Registers 0 through 17 are read-
only status registers; registers 18 through 31 are read/write setup registers. These
registers are documented in the Parallel Integrated Frame Synchronizer Chip ASIC
document referenced in Section 1.5.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

e. RSEC Chip: Thereare 40 internal RSEC Chip registers. Registers 0 through 20 are
read-only status registers; registers 21 through 39 are read/write setup registers. These
registers are documented in the “ Reed-Solomon Error Correction Chip”, in Section 10 of
the Microelectronic Systems Branch Application-Specific Integrated Circuits (ASC)
Components Document referenced in Section 1.5.

f. RSRouting Table: This64-Kbyte RAM location on the PCI10FR Prototype Board is
used by the RSEC Chip to determine how to route its output frames. Thistableis
documented in the PCI10FR Hardwar e Definition Document, and the “ Reed-Solomon
Error Correction Chip”, in Section 10 of the Microelectronic Systems Branch Application-
Soecific Integrated Circuits (ASC) Components Document. Both of these documents are
referenced in Section 1.5.

g. ReturnLink Data FIFO'sand Forward Link Command FIFO: The four return link data
FIFO’ s and the one forward link command FIFO have addresses in board memory space.
The data stored in the FIFO’ s can be read directly, and data can be written into these
FIFO sdirectly. These FIFO's are documented in the PCI10FR Hardware Definition
Document, as well as the CMOS SyncFIFO IDT72241 specification sheets referenced in
Section 1.5, and found in Appendix C of this document.

h. NCO Clock Chip: The NCO Clock Chip generates a clock signal for the Forward Link
Output Subsystem. The frequency of the clock signal is varied by setup registersin the
Board Control Register. Thisregister is documented in the PCI10FR Hardware
Definition Document. Information on programming the NCO Clock Chip isfound in the
Dual Programmable Clock Generator specification sheets, found in Appendix D of this
document, and the Using CH9203 in Multiple Speed CD-ROM Drive application notes,
found in Appendix E of this document. Both the specification sheets and application
notes are published by Chrontel. These documents are referenced in Section 1.5.

i. Temperature Chip: The Temperature Chip isused to monitor board temperature. In
actual practice, this chip isnot used because the board temperature has not been found to
be aproblem. The Temperature Chip is programmed and commanded through
Miscellaneous Control Register, and the temperature and setup information is read
through Status Register 2. These registers are documented in the PCI10FR Hardware
Definition Document. Information on programming the Temperature Chip can be found
in the DS1620 Digital Thermometer and Thermostat specification sheets, found in
Appendix F, and the Application Note 105 — High Resolution Temperature Measurement
with Dallas Direct-to-Digital Temperature Sensors application notes, found in Appendix
G. Both the specification sheets and application notes are published by Dallas
Semiconductor. These documents are referenced in Section 1.5.

j. Serial EEPROM Chip: Thischip isused to download PCI configuration space
information into the V962PBC on boot-up. The PCI10FR device driver does not really
interface directly with this chip, but it could. The Serial EEPROM Chip can be
reprogrammed on the board viathe V962PBC registers. Information about the Serial
EEPROM Chip can be found in the 2-Wire Serial CMOS E°PROMs specification, found
in Appendix H. This document is published by Atmel, Inc., and it is referenced in
Section 1.5.

2-5

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

k. DMA Chaining Memory: Thereis 128-Kbytes of RAM on the PCI10FR Prototype Board
for storing linked addresses for DMA chaining. Unfortunately, Revision B2 of the
V962PBC does not support DMA chaining. The V3 Corporation expectsto release
Revision CO of the V962PBC sometime in April 1997. Thisrevision will support DMA
chaining.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Section 3. Design Description

3.1 Task Model

The task-level design step partitions Data Flow Diagrams (DFD’s) into cohesive units of
manageabl e size and complexity called tasks. Since this document was written after the software
had already designed, implemented, and tested, the DFD’ s have already been partitioned into tasks.
Therefore, this section of the document presents task-oriented DFD’ s and their specifications. The
context model for the PCI10FR Device Driver and the PCI 10FR Wrapper API was presented in
Figure 2-1. The Level 1 DFD for the PCI10FR Device Driver is shown in Figure 3-1.

cmm—

i i
170 Request Packet 1/0 Status Windows NT Windows NT
and Parameters Load Command Unload Command

\

\

and Parameters
L

1.0

3.0 5.0
Dispatch %r?iat?aﬁ;g Unload i
I0CTL . Device i
Commands Device Driver 7
Driver 0 :

N -
Create Destroy
\ Device Object Device Object :
L]

Data Channel Board Memory I
Information Offset and i :
Parameters Board Memory /
Offset and Board Memory ¢ !
Parameters Read Value H o

H

H
H . i
v \4 i
L V.]
Global PCI1OFR !
Device Object and
Device Extension

\ {
j Data Channel H

Board Memory Information
Base Address

Board Memory
Read Value

Global PCI10OFR
Device Object and
Device Extension

Board Memory

20

Perform Offset and Parameters 4.0
B d 170 Handle
Sorati Interrupts

Level 1 DFD

Board Memor H
Board Memory rite val Yy Interrupts DPC
Read Value rite Value . Objects

\/ L/

Figure 3-1. Level 1 DFD/Task Model for the PCI1L0FR Device Driver

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

As shown, the PCI10FR Device Driver has five main tasks;

a
b.
C.
d.

€.

Load and Initiaize Device Driver
Perform Board 1/0 Operations
Digpatch IOCTL Commands
Handle Interrupts

Unload Device Driver

Each of these tasks will be presented in detail later in Section 3 of this document.

3.2 Design Assumptions/Dependencies

Severa design assumptions were made to simplify implementation of the PCI10FR Device Driver.
These assumptions are listed below:

a

The number of data channels and the number of DMA transfer DPC’ s are limited to four
since there are only four return FIFO’ s on the PCI 10FR Prototype Board.

The number of DMA Complete DPC’ s are limited to two since there are only two DMA
engines on the V962PBC.

The “ProbePci” function was written to look for all instances of PCI10FR boards
installed on the PCI bus. Every time this function finds a board, the “ CreateDevice”
function iscalled. However, no provisions were made to store information for more than
one board.

Currently, only three memory resources may be stored in the device extension since the
PCI10FR Prototype Board only uses two memory resources. This could be changed by
changing the value of “kMaximumMemoryBases’ found in the “pcil0fr_dev.h” file from
3 to some new value.

The vendor identification and device identification for the PCI10FR Prototype Board are
currently stored in the “v96xpbc.h” file. Oncereal PCI vendor and deviceid' sare
obtained, they could be stored in the Registry and read by the device driver. Thiswould
provide more flexibility.

No IOCTL’ swere created to allow a user-mode application to read from or write to
specific PCI configuration registers. 1t wasfelt that most applications would not need this

capability.

3.3 Device Driver Wrapper API

The PCI10FR Wrapper API provides a consistent interface to applications using the PCI10FR
Device Driver, regardless of the platform or operating system being used. Most of the higher level
API functions are based on the lower-level read and write functions and are very straight-forward.
The three data channel functions are more complicated and will be discussed in their own sections.

3-2

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

The following PCI10FR Wrapper API functions are provided to applications:
a. void OpenDevice(HANDLE *hDriver)

This function opens the PCI 10FR device and provides a handle that is used by al of the
other functions to access the device.

b. void CloseDevice(HANDLE hDriver)

This function closes the PCI10FR device and returns the handle.
c. void ResetBoardHANDLE hDriver)

This function resets the PCI10FR Prototype Board.
d. void LoadBoardConfig(HANDLE hDriver, BOOL Id)

This function loads a binary configuration file containing al of the board, PIFS chip,
RSEC chip, and FIFO programmable flag configuration parameters that were previously
saved using the “ SaveBoardConfig” function. If the second argument istrue, the
function will prompt the user for the name of the configuration fileto load. If itisfalse, a
default configuration file will be loaded.

e. void SaveBoardConfig(HANDLE hDriver, BOOL sv)

This function saves the board, PIFS chip, RSEC chip, and FIFO programmable flag
configuration parametersin abinary configuration file. If the second argument istrue, the
function will prompt the user for a configuration file name. If it isfalse, the parameters
will be saved in adefault configuration file.

f. Uint32 OpenDataChannel (HANDLE hDriver, Uint32 channel,
DATA_CHANNEL_PRIORITY priority, Ubyte *filename, Uint32 fileTransferSize,
Ubyte * destAddress)

See Section 3.3.1.
g. Uint32 FlushDataChannelS(HANDLE hDriver, BOOLEAN closeChannel Flag)

See Section 3.3.2.
h. Uint32 CloseDataChannelS(HANDLE hDriver)

See Section 3.3.3.
i. void GetPciConfiguration(HANDLE hDriver)

This function reads and displays the standard and the V 962PB C-specific PCI
configuration registers.

3-3

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

j. Uint32 ReadDeviceUbyte(HANDLE hDevice, Uint32 offset, Ubyte buffer)
This function reads asingle 8-bit value into a buffer from a board memory map offset
specified by the offset argument. It returns the number of bytes read.

k. Uint32 ReadDeviceUint16(HANDLE hDevice, Uint32 offset, Uint16 buffer)
This function reads asingle 16-bit value into a buffer from aboard memory map offset
specified by the offset argument. It returns the number of bytes read.

[. Uint32 ReadDeviceUint32(HANDLE hDevice, Uint32 offset, Uint32 buffer)

This function reads a single 32-bit value into a buffer from a board memory map offset
specified by the offset argument. It returns the number of bytes read.

m. Uint32 WriteDeviceUbyte(HANDLE hDevice, Uint32 offset, Ubyte value)
This function writes a single 8-bit value to a board memory map offset specified by the
offset argument. It returns the number of bytes written.

n. Uint32 WriteDeviceUint16(HANDLE hDevice, Uint32 offset, Uint16 value)

This function writes asingle 16-bit value to a board memory map offset specified by the
offset argument. It returns the number of bytes written.

0. Uint32 WriteDeviceUint32(HANDLE hDevice, Uint32 offset, Uint32 value)

This function writes a single 32-bit value to a board memory map offset specified by the
offset argument. It returns the number of bytes written.

p. Uint32 ReadDeviceUbyteBuffer(HANDLE hDevice, Uint32 offset, Ubyte buffer, Uint32
numberUchars)

This function reads a specified number of 8-bit values into a buffer, starting at the board
memory map offset specified by the offset argument. It returns the number of bytes read.

g. Uint32 ReadDeviceUint16Buffer(HANDLE hDevice, Uint32 offset, Uint16 buffer,
Uint32 numberUshorts)

This function reads a specified number of 16-bit valuesinto a buffer, starting at the board

memory map offset specified by the offset argument. It returns the number of bytes read.
r. Uint32 ReadDeviceUint32Buffer(HANDLE hDevice, Uint32 offset, Uint32 buffer,

Uint32 numberUlongs)

This function reads a specified number of 32-bit valuesinto a buffer, starting at the board

memory map offset specified by the offset argument. It returns the number of bytes read.
s. Uint32 WriteDeviceUbyteBuffer(HANDLE hDevice, Uint32 offset, Ubyte buffer, Uint32

numberUchars)

34

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

This function writes a specified number of 8-bit values stored in a buffer, starting at the
board memory map offset specified by the offset argument. It returns the number of
bytes written.

Uint32 WriteDeviceUint16Buffer(HANDLE hDevice, Uint32 offset, Uint16 buffer,
Uint32 numberUshorts)

This function writes a specified number of 16-bit values stored in a buffer, starting at the
board memory map offset specified by the offset argument. It returns the number of
bytes written.

Uint32 WriteDeviceUint32Buffer(HANDLE hDevice, Uint32 offset, Uint32 buffer,
Uint32 numberUlongs)

This function writes a specified number of 32-bit values stored in a buffer, starting at the
board memory map offset specified by the offset argument. It returns the number of
bytes written.

3.3.1 OpenDataChannel Function

This function is used to open a data channel to a specific FIFO on the PCI10FR Prototype Board.
Specifically, this function fills in most of the data channel information in the DATA_CHANNEL
structure, creates a number of Win32 events, and creates a“ ReadDataChannel” thread used to talk
directly with the device driver.

The four sections that follow discuss the arguments of the “OpenDataChannel” function, the
possible return values of this function, the sequential tasks that this function performs, and the
tasks that the “ ReadDataChannel” function performs.

3.3.1.10penDataChannel Function Arguments

The " OpenDataChannel” function is passed six arguments:

a
b

o

A handle to the PCI10FR Device Driver.
A channel number from 0 to 3 for the four FIFO banks.
A priority argument that is used to set the “ ReadDataChannel’s’ thread priority.

A buffer containing afilename to be used for archiving the datato ahard drive. The
filenameisoptional. If no filenameis provided, no data archiving will occur.

A fileTransferSize argument (in Kbytes) used to determine the size of thefile transfers.
ThefileTransferSize argument is optional only if no filename was provided. If afilename
is provided, then thisfield is necessary.

A buffer containing a network destination addressin ASCII for networking real-time
virtua channels. Thisfield is completely optional since no networking capabilities have
been implemented in the software.

3-5

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

3.3.1.20penDataChannel Function Return Values

Since there are many sources of errorsin creating all of the events, creating the thread, and
alocating the circular buffer memory, several error messages can be returned by the
“OpenDataChannel” function. Table 3-1 describes these error messages.

Table 3-1. Return Values from the OpenDataChannel Function

Return Value Description

kNoOError This is the default return value. There were no errors.

kCreateThreadError | An error occurred in creating the “ReadDataChannel” thread.

kOpenEventFileError | Not used anymore. Ignore.

kAllocateBufferError An error occurred in allocating memory in the
“ReadDataChannel” thread.

kCreateEventError An error occurred in creating at least one event object.

kOpenDataFileError An error occurred in opening a data archive file in the
“ReadDataChannel” thread.

kloctlOpenError An error occurred in the “ReadDataChannel” thread when
trying to send the device driver an IOCTL open data channel
command.

3.3.1.30penDataChannel Function Algorithm
The *“ OpenDataChannel” function performs the following sequential tasks:

a. Zeroesthe data channel information stored in the global DATA_CHANNEL structure for
the specific data channel.

b. Storesthe handleto the driver, the channel number, and the channel priority in the
DATA_CHANNEL structure.

c. Determines whether the PIFS chip isin CCSDS or weather mode and stores this
information inthe DATA_CHANNEL structure. Thisinformation is used to determine
whether individual virtual channel statistics and counts will be done. These counts are
currently performed by one of the debugger functions.

d. If afilenameisprovided, itisstored inthe DATA_CHANNEL structure.

e. If anetwork destination addressis provided, it is stored in the DATA_CHANNEL
structure.

f. Cadculatesthetotal dataframe size based on reading the RSEC output length registers,
and based on whether data padding is turned on or off.

Initializes al of the data channel memory pointersto NULL.

Calculates and stores al of the necessary buffer sizes, DMA transfer sizes, and actual file
transfer sizesinthe DATA_CHANNEL structure.

3-6

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Creates a kCloseDataChanne Event and a kHushDataChannel Event and stores the event
handlesinthe DATA_CHANNEL structure.

Initializes dl countersto zero.
Creates a new Win32 thread called “ ReadDataChannel” at the specified priority level.

Checksthe “channelEnabled” field in the DATA_CHANNEL structure, which is set by
the thread once everything is working, to make sure that the data channel is ready for data
transfers.

Checksthe “errorCode” field in the DATA_CHANNEL structureto seeif any errors have
occurred in the new thread.

Returns a kNoError status if no errors occur. Cleans up everything that was opened,
created, or allocated if thereis an error message, and then return the error message.

3.3.1.4ReadDataChannel Thread Algorithm

The “ReadDataChannd” thread is created by the “ OpenDataChannel” function. Its main purposeis
to sleep until awakened by a event, and then to take appropriate action. Thisthread is passed the
specific channel number. It has no return value.

The “ReadDataChannel” thread performs the following event-driven tasks:

a

Allocates alarge buffer based on the buffer size information found in the
DATA_CHANNEL structure. Returns

Divides the buffer into DMA blocks and event blocks. A DMA block is the amount of
data actually transferred from the FIFO into the buffer per DMA transfer. For efficiency,
the device driver does not signal a data event for every DMA transfer. It waits until
enough DMA blocks have been transferred to make an efficient file transfer. It then setsa
data event and the entire event block, made up of numerous DMA blocks, is archived to
disk.

Creates a kBufferOverflowEvent and numerous data events. The kBufferOverflowEvent
is used by the device driver to signal that the circular buffer has overflowed. The data
events are used by the device driver to signal that an event block isready to be archived to
disk.

If afilename was provided, the thread opens a data file to archive the data.

If anetwork destination address was provided, the thread does nothing. Again, this
feature is not implemented.

Sends an open data channel IOCTL command to the device driver.

If anything has gone wrong up to this point, the thread reverses all the previous activities
and returns with an appropriate error message. If everything worked, the thread goes to
deep in an event loop waiting for one of the eventsto occur.

If adata event occurs, the datais archived to the open archivefile, if applicable.

3-7

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

If the datais CCSDS data, a PCI 10FR Debugger function called “ gatherStats’ is called to
gather individua virtual channel statistics and counts.

Resets the data event.
Updates the event block counters and pointers.

If akFlushDataChannel Event occurs, the event is reset and aflush data channel IOCTL
command is sent to the device driver. ThisIOCTL call returns the number of 32-bit
words that were flushed into the circular buffer. Thisdataisthen archived (if applicable),
CCSDS «atistics are gathered (if applicable), and the counters and pointers are updated.

If akCloseDataChannel Event occurs, the event is reset and a close data channel IOCTL
command is sent to the device driver. The archivefileisclosed (if applicable), al of the
events are closed, the circular buffer memory isfreed, the “ channelEnabled” field in the
DATA_CHANNEL structureis set to FALSE, and the thread exits the event loop and
returns.

If akBufferOverflowEvent occurs, the event is reset and the numberBufferOverflows
counter inthe DATA_CHANNEL structureisincremented. Currently, the thread takes
no further action other than record the number of overflows.

3.3.2 FlushDataChannels Function

This function is used to flush and capture all of the return link data that is left in all of the data
channel FIFO’s after amission. The function can also be called during apassif thereis aneed to
“start over”.

The “FlushDataChannels’ function is passed a handle to the PCI10FR Device Driver, aswell asa
BOOLEAN flag indicating whether the function was called from the “ CloseDataChannels’ function
(true), or whether the function was called directly (false). The “FlushDataChannels’ function
performs the following tasks:

a

Checks to make sure that at least one data channel is open, and returns immediately if
there are no open data channels. Inthis case, thereturn valueis
kNoDataChannel sOpenError.

Disables the PIFS chip so that new data cannot enter the system.

Sleeps for 100 milliseconds to allow data to empty out of the PIFS and RSEC chips, due
to time-outs, and into the data channel FIFO's.

For each open data channel, sets the kFlushDataChannel Event. Thiswill cause the
“ReadDataChannel” thread to awaken and perform the necessary action. The
“FlushDataChannels’ function checks the flushComplete field in the DATA_CHANNEL
structure to make sure that each data channel has been flushed before setting the next data
channel’ s kFlushDataChannel Event.

If the “FlushDataChannels’ function was not called by the “ CloseDataChannels’ function,
then the PIFS chip isreenabled. Otherwise, the PIFS chip isleft disabled.

3-8

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

f.

Returns kNoError if there were no errors.

3.3.3 CloseDataChannels Function

Thisfunction is used to flush and close al of the open data channels. The “CloseDataChannels’
function is passed a handle to the PCI10FR Device Driver, and it then performs the following

tasks:

a

d.

Callsthe “FlushDataChannels’ function with the closeChannel Flag parameter set to true.
If an error occursin the “FlushDataChannels’ function, the error messages described in
Section 3.3.2 are forwarded as the “ CloseDataChannels” function returns immediately.

For each open data channel, sets the kCloseDataChannelEvent. Thiswill cause the
“ReadDataChannel” thread to awaken and perform the necessary action. The
“CloseDataChannels’ function checks the channelEnabled field in the DATA_CHANNEL
structure to make sure that each data channel has been closed before setting the next data
channel’ s kCloseDataChannel Event.

As each data channel is closed, its “ ReadDataChannel” thread returns, the thread id is
closed, and the specific data channel informationin the DATA_CHANNEL structureis
zeroed.

Returns KNoError if there were no errors.

3.4 Device Driver Data Structures

There are several very important data structures used in the PCI10FR Device Driver. These data
structures include:

a

The PCI_DEVICE gtructure is defined in the “pci10fr_dev.h” file. Thisisthe global
device extension structure of the PCI10FR device object. Itisused to store dl static
variables, such as the data channel information, the board’ s base memory address, the
interrupt vectors, etc.

The V3_SPECIFIC_PCI_CONFIG structure is defined in the “v96xpbc.h” file. It
contains the V962PBC-specific PCI configuration register values.

The DATA_CHANNEL structure is defined in the “pci10frnt.h” file. Thisstructureis
used by both the PCI10FR Device Driver and the PCI10FR Wrapper APl to store data
channel information.

The RW_PARAMETERS structure is defined in the “ pci 10frnt.h” file. Thisstructureis
used with read and write IOCTL commands to pass board memory map offsets and write
valuesto the device driver.

The PCI_COMMON_CONFIG structure is defined in the Windows NT “ntddk.h” header
file. This structure contains the standard PCI configuration register values. Itisused in
severa driver functions to store the current values of the PCI configuration registers. Itis
also used by the PCI10FR Wrapper APl in the “ GetPciConfiguration” function.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

L]
Windows NT
Load Command

1.6

Probe PCI Bufg Create 170
for PCI1OFR

Board

PCI Config Read
Vendor/Device ID

[

Dispatch
Table

PCI Config R/W
Enable Interrupts

A

Interrupts

PciVendorld
2 PCl Bus PcilnterruptConfi
PciDeviceld and Slot ID cinterrptzont
PCI Bus
and Slot ID\‘
1.3 1.4
P Create CreOa;}ae(E:)teVIe Allocate Devige

PCI Config R/W
Get Resources

temesaen Device Objeé:t..... .. Resources an H

and Device,
Extensio

\ Device

Resources

All PCI Registers|

Interrupt
Resources and
DPC Function

Names

1.5

Connect
Interrupt and
Initialize DP@"

Figure 3-2. Load and Initialize Device Driver Task

3.5 Device Driver Loading and Initialization Task

Before adevice driver can be used by an application, it must first be registered with the Windows
NT Registry. A device driver only needs to be registered once, unless the name of the driver or the
start up parameters are changed. Registration is discussed in Section 4.4.

3-10

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

After adevice driver isregistered, it must be loaded into memory and initialized. Information
about when adriver isloaded is contained in the “ini” file used during registration. A device driver
may be loaded manually, or it may be loaded automatically. The “ini” file tells Windows NT
exactly when to load the driver. In the case of the PCI10FR Device Driver, the “pcil0fr.ini” file
tells the operating system to load the driver manually. Therefore before the driver is used, the
following command must be entered at the command prompt:

net start pcilOfr

This command causes the Windows NT /O Manager to cal the DriverEntry function of the
PCI10FR Device Driver, as shown in the DFD in Figure 3-2.

The DriverEntry function of the device driver must first determine whether a PCI10FR deviceis
installed on the PCI bus. It does this by caling a function caled ProbePci. This function
examines every board on the PCI bus, or busses, by reading their PCI configuration registers and
comparing their vendor identifications and device identifications with the identifications for the
PCI10FR board. Once the ProbePci function finds a board that matches the PCI 10FR board, it
calsafunction caled, CreateDevice.

NOTE

Currently, the PCI10FR is still using the vendor identification and
device identification of the V962PBC. Since this board is a
prototype, no vendor or device identification numbers were
requested from the PCI Special Interest Group (SIG). Before the
PCI10FR Board can be sold as a commercia product, new
identification numbers must be obtained.

Most of the work of initializing the PCI10FR Device Driver occurs in the CreateDevice function.
This function performs the following sequential tasks:

a. Createsadevice object called “pci10fr”. It also creates a device extension, whichis
nothing more than device-specific globa memory for the device driver.

b. Createsasymbolic link, or name, that aWindows NT application can specify to open the
device and get ahandletoit. Inthiscase, the nameis*“pcilOfr”.

c. Cdlsthe ResatBoard function, which in turn calls the FlushV 962PhcFifos function and
the ReinitBoard function. The FlushV 962PbcFifos function flushes the board’ s
V962PBC read and write FIFO’ sto eliminate any garbage data lingering in them.

d. TheReinitBoard function reinitializes some of the PCI configuration registersto their
correct values. Thisstep isno longer necessary when using Revision B2 of the
VI62PBC. Earlier revisions required that the V962PBC registers be unlocked at boot up,
and unfortunately allowed some read-only registers to be overwritten.

e. Usesthe Hardware Abstraction Layer (HAL) call, “Ha AssignSlotResources’, to obtain a
list of al required resources. These resources include memory, port I/O, and interrupts.
The PCI10FR Board requires two resources. a 16-Mbyte memory address space, and an
interrupt vector. A third resource, a port I/O resource, is aso obtained for reading and

3-11

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

K.

writing to the PCI configuration space; however, this resource is not needed since there
are direct HAL functions that handle PCI configuration 1/0.

Allocates the memory resource required, and trand ates the bus address into a physical
address, and then into a system address that can be used by the device driver. This
memory addressis stored in the driver’s device extension and is used in reading and
writing to board memory locations.

Allocates an interrupt vector for the board.
Initializes a couple of Windows NT Adapter objectsfor usein DMA operations.

Callsthe EnableBoard function to enable the board’ s memory space and bus master
control bitsin the V962PBC Control Register.

Initializes four deferred procedure calls (DPC’s), one per return link FIFO, for usein
transferring data from these FIFO'sviaDMA.

Initializes two DPC’s, one per DMA engine, for usein completing a DMA transfer.

Connects the interrupt vector.

If any one of these steps fails, the PCI10FR Device Driver will reverse everything that has been
done up to the point of error, and then return STATUS_UNSUCCESSFUL to the Windows NT
operating system.

After the CreateDevice function has performed its many tasks, the DriverEntry function will create

dispatch points for al legitimate calls made to the device driver. The Windows NT /O Manager
uses these dispatch pointsto call the correct functions within the device driver.

Finally, the board interrupts are enabled by writing to the V962PBC’ s PCI Interrupt Configuration

register. Thetwo DMA interrupts and the local board interrupt are the only two interrupts that are

enabled. The PCI10FR does not use the mail-box interrupts. In retrospect, it would be a good
idea not to enable board interrupts until al data channels are open and the system is ready to go.

All of these functions discussed above are located in the “pci10fr.c” file.

3-12

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Board Memory
Base Address

R PQI Eong?f t PCI Confi PCI Config Board Memory Board Memory Board Memory
egister Offse onfig) ()
and Pointer for Register Read Value ;nedgl\fvtrer Offset Offset and Write Value Read Value Offset and Pointer

ite Value \ for Read Value

/

Read Va\lue /
\

2.2
Write

Registers Registers Registers

PCI PCI Board Board
Config Config Memory Memory
Read Write Write Read
Value Value Value Value

Figure 3-3. Board I/O Task

3.6 Device Driver Board I/O Task

The Board 1/0 task, which is shown in Figure 3-3, is used by all other tasks to read from and write
to PCI configuration registers, and to read from and write to all PCI10FR Board registers and
memory spaces. The Board I/O task uses Windows NT HAL callsto perform its task.

3.6.1 Reading PCI Configuration Registers

Three functions are provided to read PCI configuration space, depending on whether the value to
be read is an 8-bit, a 16-bit, or a 32-bit value:

a. ReadPciConfigUchar (8-bit value)
b. ReadPciConfigUshort (16-bit value)
c. ReadPciConfigUlong (32-bit value)

The arguments passed to these functions include the PCI10FR device extension, the offset within
PCI configuration space that isto be read, and a pointer to a buffer to hold the value read. These
functions then use the operating system’ s “Hal GetBusDataByOffset” function to read the value into
the buffer. Each of the three functions returns the number of bytes actually read.
3.6.2 Writing PCI Configuration Registers
Three functions are also provided to write to PCI configuration space:

a. WritePciConfigUchar (8-bit value)

b. WritePciConfigUshort (16-bit value)

c. WritePciConfigUlong (32-hit value)

3-13

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

The arguments passed to these functions include the PCI10FR device extension, the offset within
PCI configuration space that is to be written to, and a pointer to a buffer that holds the value to be
written. These functions then use the operating system’s “Hal SetBusDataByOffset” function to
write the value from the buffer into the PCI configuration register. Each of the three functions
returns the number of bytes actually written.

Two additional functions are provided to unlock and lock the lockable PCI configuration registers.
UnlockPciRegisters and LockPciRegisters.

All of the functions used to read from and write to PCI configuration registers, as well as the
UnlockPciRegisters and L ockPciRegisters functions, are located in the “rwconfig.c” file.
3.6.3 Reading Board Memory Locations

Reading and writing to board memory locations is easy and is done so frequently that specific
functions were not developed for thistask. When another driver function needs to read a board
memory location, it adds the local bus memory map offset of the register to the MemoryBase
address stored in the PCI10FR device extension. It then performs one of six possible memory
read operations provided by the HAL :

a. READ_REGISTER _UCHAR (readsasingle 8-bit value)

b. READ REGISTER USHORT (readsasingle 16-bit value)

c. READ_REGISTER _ULONG (reads asingle 32-bit value)

d. READ_REGISTER BUFFER_UCHAR (reads a specified number of 8-bit values)

e. READ_REGISTER BUFFER_USHORT (reads a specified number of 16-bit values)
f. READ_REGISTER BUFFER _ULONG (reads a specified number of 32-bit values)

Thefirst three functions are used when only a single value needs to be read from the board. The
argument to these three functions is the board address that was calculated from the register offset
and MemoryBase address. The functions return the actual value.

The second three functions are used when multiple contiguous board memory |ocations need to be
read. The arguments to these three functions are the cal culated board address, a pointer to a buffer
to store the values read, and the number of valuesto be read. These functions do not have areturn
value. Note that the number of values to be read is not the same as the number of bytes. For
example, if one wanted to read 15 ULONG' s from the board, the correct number of valuesto read
argument for the READ_REGISTER_BUFFER_ULONG function is 15 values— not 60 bytes.

3.6.4 Writing Board Memory Locations

Writing to board memory locations is very similar to reading from board memory locations. When
another driver function needs to write to a board memory location, it adds the local bus memory
map offset of the register to the MemoryBase address stored in the PCI10FR device extension. It
then performs one of six possible memory write operations provided by the HAL :

a. WRITE REGISTER_UCHAR (writesasingle 8-bit value)

3-14

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

b. WRITE REGISTER_USHORT (writesasingle 16-bit value)

c. WRITE_REGISTER_ULONG (writes asingle 32-bit value)

d. WRITE REGISTER BUFFER_UCHAR (writes a specified number of 8-bit values)

e. WRITE REGISTER BUFFER_USHORT (writes a specified number of 16-bit values)
f. WRITE_REGISTER BUFFER_ULONG (writes a specified number of 32-bit values)

The first three functions are used when only a single value needs to be written to the board. The
arguments to these three functions are the board address that was calculated from the register offset
and MemoryBase address, and the value to be written. The functions do not return any value.

The second three functions are used when multiple contiguous board memory locations need to be
written. The arguments to these three functions are the calculated board address, a pointer to a
buffer that stores the values to be written, and the number of values to be written. These functions
also do not have areturn value. Note that the number of values to be written is not the same as the
number of bytes. For example, if one wanted to write 15 ULONG' s to the board, the correct
number of values to write argument for the WRITE_REGISTER_BUFFER_ULONG function is
15 values — not 60 bytes.

All of the board read and write functions are available to an application program through IOCTL
callsto the PCI10FR Device Driver. These IOCTL calls are processed by the Dispatch Task.

3.7 Device Driver Dispatch IOCTL Commands Task

The Dispatch IOCTL Commands Task isresponsible for handling all driver calls from a user-mode
application. During the Loading and Initialization Task, the DriverEntry function of the device
driver stores dispatch points (function pointers) in the driver object, which is later used by the
Windows NT I/O Manager to determine which function to cal in response to a user-mode
application 1/0 request. When a user-mode application makes a Win32 device driver call, the
Windows NT /O Manager creates an 1/0 Request Packet (IRP), looks at its dispatch table, and
calls the appropriate function within the device driver. The device driver isthen responsible for
handling the IRP and quickly returning status through the IRP back to the user-mode application.
Thisis shown in the Digpatch IOCTL Commands DFD in Figure 3-4.

A user-mode application must first open a device and get a handle to the device object beforeit can
make any other callsto the device. The Win32 API function for opening a device is cdled
CreateFile. It isthe same function that is used to open afile. The PCI10FR device is opened with
a device name of “pcilOfr”, with generic read and write attributes, and with asynchronous
operations turned off. The Win32 API iswell documented and is not included in this document.
The Win32 CreateFile function is encapsul ated by the PCI10FR Wrapper API call, “OpenDevice’.

Once a handle to the PCI10FR device is obtained, the user-mode application may issue IOCTL
commands to the PCI10FR Device Driver. All of the PCI10FR Device Driver IOCTL definitions
areincluded in the “pci10frnt.h” file. Thisfileis common to both the PCI10FR Device Driver and
user-mode applications such as the PCI10FR Debugger. The PCI10FR Wrapper APl encapsul ates
the underlying “ DeviceloControl” Win32 API call.

3-15

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

»
1/0 Request Packet 1/0 Status
and Parameters and Parameters
\ /

R:;lsf:rng?fset Board Memory
/and Pointer foT Offset and Pointer
/ Read Value
P Read Value
3.1
Dispatch
I0CTL
Commands
—
\ PCI Config Board Memory
Register Read Value HIES Read Value

\] Data Channel
PCI Config Information : N Board Memory

\ Register Offset : Offset and Write Val

and Write Value

H
¥

3.4
Close
Data

Channel

3.3
Flush
Data

Channel

3.2
Open
Data

Channel

Data Channel
— Information

Data Channel
[~ Information

Board Read

FIFO x Empty Flag Board R/W

Disable Channel
Interrupt

[

Board R/W Board R/W
Enable Channel Disable Channel

Interrupt Interrupt

Board Read
FIFO x Empty Flag

DFD 3.0

Main C_ontrol Main Qontrol Status Register FIFO # x Space Main C_ontrol
Register Register Register

Data Channel
Information

Figure 3-4. Dispatch IOCTL Commands Task

The Dispatch IOCTL Commands Task is handled by two functions that are included in the
“dispatch.c” file: “Dispatch” and “loctIDispatch”. The first function handles the two basic non-
IOCTL calls, “IRP_MJ CREATE” and “IRP_MJ CLOSE”. The second function handles all of
the PCI10FR Device Driver-specific IOCTL cals, including:

a. |0CTL Read Commands
b. 1OCTL Write Commands
c. 1OCTL Open Data Channd Command
d. I10OCTL Fush Data Channel Command

3-16

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

e. |IOCTL Close Data Channed Command

Each of these commandsis discussed in the following sections.

3.7.1 I0CTL Read Commands

As seen in Figure 3-4, the Dispatch IOCTL Commands task (DFD bubble 3.1) allows a user-mode
application to request board memory reads and writes of 8-bit, 16-bit, and 32-bit values. The
loctIDispatch function uses the Board 1/0 Task to actualy perform the board read and write
operations. This capability is used extensively to setup the board registers and to get board status.

For board memory read operations, the user-mode application sends the device driver one of seven
IOCTL read commands:

a. IOCTL_PCI10FR_READ_UCHAR (readsasingle 8-hit value)
b. 10CTL_PCI10FR_READ_USHORT (reads asingle 16-bit value)

c. |OCTL_PCI10FR_READ_ULONG (readsasingle 32-bit value)
d. 10CTL_PCI10FR_READBUFFER_UCHAR (reads a specified number of 8-bit values)
e. |OCTL_PCI10FR_READBUFFER_USHORT (reads a specified number of 16-bit values)

f. 10CTL_PCI10FR_READBUFFER_ULONG (reads a specified number of 32-bit values)

g. IOCTL_PCI10FR_GET_CONFIGURATION_SPACE (reads al of the entire PCI
configuration registers on the V962PBC)

Included in the IOCTL read command is a pointer to avariable to hold the read value or values, the
number of valuesto read, and a parameter structure (RW_PARAMETERY) that contains the board
memory map offset for the location to read. Once the user-mode application issues the IOCTL
command, the I/0O Manager generates an IRP, looks up and calls the appropriate dispatch function
within the PCI10FR Device Driver, and passes the IRP to it. The loctlDispatch function’s switch
construct determines which IOCTL command was issued, extracts the parameters, uses the Board
I/0 Task’s functions to carry out the command, stores the read value or values in the read
variable’ s location, stores the status of the request in the IRP, and completes the |/O request by
calling the Windows NT “loCompleteRequest” function.

Thelast IOCTL read command is used to read the PCI configuration registers on the V962PBC.
This function is used primarily for debugging purposes. Additional PCI configuration read and
write IOCTL commands can easily be added to the device driver.

3.7.2 I0CTL Write Commands

For board memory write operations, the user-mode application sends the device driver one of six
|OCTL write commands:

a |OCTL_PCI10FR_WRITE_UCHAR (writesasingle 8-bit value)
b. 10CTL_PCI10FR_WRITE_USHORT (writesasingle 16-bit value)
c. IOCTL_PCI10FR_WRITE_ULONG (writesasingle 32-bit value)

3-17

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

d. 1OCTL_PCI10FR_WRITEBUFFER_UCHAR (writes a specified number of 8-bit

values)

e. IOCTL_PCI10FR_WRITEBUFFER_USHORT (writes a specified number of 16-bit
values)

f. 1OCTL_PCI10FR_WRITEBUFFER_ULONG (writes a specified number of 32-bit
values)

Included in the first three IOCTL write commands are the number of values to write, and a
parameter structure (RW_PARAMETERS) that contains the board memory map offset for the
location to write, and the actua value to write. Included in the second three IOCTL write
commands are a pointer to a variable that holds the values to be written, the number of values to
write, and a parameter structure (RW_PARAMETERS) that contains the board memory map offset
for the location to write. Aswith the read operations, once the user-mode application issues the
IOCTL command, the I/0 Manager generates an IRP, looks up and calls the appropriate dispatch
function within the PCI10FR Device Driver, and passesthe IRPto it. The loctIDispatch function’s
switch construct determines which IOCTL command was issued, extracts the parameters, uses the
Board /O Task’ s functionsto carry out the command, stores the status of the request in the IRP,
and completes the 1/0 request by calling the Windows NT “loCompleteRequest” function.

3.7.3 I0CTL Open Data Channel Command

The IOCTL_PCI10FR_OPEN_DATA_CHANNEL command is used by the PCI10FR Wrapper
APl “ReadDataChannel” thread to prepare the PCI10FR Device Driver to start receiving return link
telemetry data from one of the four return link data FIFO’ s on the board. ThisOCTL command
passes the device driver aDATA_CHANNEL structure containing all of the pertinent information
about the data channel, such as the channel (FIFO) number, the base virtual address for the circular
buffer, datatransfer lengths, and a set of event handles to be used by the device driver to signal the
“ReadDataChannel” thread. This|OCTL command causes the device driver to sequentially:

a. Extract the data channedl information from the IRP and store thisinformation in its device
extension, as shown in Figure 3-4.

b. Trandate the base virtual address pointer into a Windows NT Memory Description List
(MDL) using the “MmCreateMdl” function.

c. Probeand lock the user-mode pages of memory so that this memory cannot be paged out
during aDPC. The“MmProbeAndLockPages’ function is used to perform this task.

d. Trandatethe MDL into avirtual memory address for DMA purposes, and into a system
address for flushing purposes. The “MmGetMdlIVirtualAddress’ and
“MmGetSystemAddressForMdl” functions are used to perform this task.

e. Initiaizethe current DMA block pointer to the base virtual address and the current data
event to the first possible data event.

f. Trandate the events handles passed in the DATA_CHANNEL into pointers for use by the
devicedriver.

3-18

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

g. Enablethe specific channe’s FIFO interrupt by writing to the board’s Main Control
Register.

h. Completing the IRP.

In retrospect, it would make more sense not to enable the specific channel’ sinterrupt in this IOCTL
command, but rather have separate IOCTL commands to enable and disable channel interrupts.
The problem with the current method is that data may start flowing and causing interrupts before
all of the data channels have been “ opened”.

3.7.4 10CTL Flush Data Channel Command

This IOCTL command is issued by the “ReadDataChannel” thread in response to a
“FlushDataChannels” PCI10FR Wrapper API call. The “FlushDataChannels’ call disables the
PIFS chip so that new data cannot be received, and it sequentially issues flush events to every open
data channel. Both the PIFS chip and the RSEC chip have time-out features so that any dataleft in
these chips will automaticaly be flushed into the designated FIFO. Each channel’s
“ReadDataChannel” thread awakens when this event occurs and issues an
IOCTL_PCI10FR_FLUSH _DATA_CHANNEL command for its particular data channel. The
thread passes the device driver a current copy of the DATA_STRUCTURE.

With the PIFS chip now turned off, and all of the datain the PIFS chip and RSEC chip now
flushed into the designated FIFO, thisIOCTL command causes the device driver to sequentially:

a. Extract the data channel information from the, as shown in Figure 3-4.
b. Disablethe channd’s FIFO interrupt by writing to the board’s Main Control Register.

c. Readthe channe’s FIFO one 32-bit word at atime and storing this data in the user-mode
circular buffer until Status Register 0 shows that the FIFO is empty.

d. Updating the pointers and the number of 32-bit words that have been flushed.
e. Reenabling the channdl’ sinterrupt.
f. Completing the IRP and returning the number of 32-bit words flushed.

If the “FlushDataChannels’ cal was issued directly, the PIFS chip is reenabled. If the
“FlushDataChannels’ call was issued by the “CloseDataChannels’ call, the PIFS chip is left
disabled.

3.7.5I0CTL Close Data Channel Command

This I0CTL command is issued by the “ReadDataChanne” thread in response to a
“CloseDataChannels’ PCI10FR Wrapper API cal. The*CloseDataChannels’ call actualy callsthe
“FlushDataChannels’ function first with a parameter telling the “ FlushDataChannels’ function not
to reenable the PIFS chip. The " CloseDataChannels’ function then sequentially issues close events
to every open data channel. Each channel’s“ReadDataChannel” thread awakens when this event
occurs and issues an IOCTL_PCI10FR_CLOSE _DATA_CHANNEL command for its particular
data channel. The thread passes the device driver a current copy of the DATA_CHANNEL
structure.

3-19

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

With the PIFS chip now turned off, and all of the data in the PIFS chip, the RSEC chip, and the
FIFO now flushed, this IOCTL command causes the device driver to sequentialy:

a

b.

C.

g.
h.

Extract the data channel information from the, as shown in Figure 3-4.
Disable the channel’ s FIFO interrupt by writing to the board’s Main Control Register.

Unlocking the locked memory pages for the specific channel using the
“MmUnlockPages’ function.

Freeing the MDL using the “loFreeMdl” function.

Reinitializing all of the DATA_CHANNEL pointersto NULL.
De-referencing al of the event objects for the specific channel.

Zeroing out al of the DATA_CHANNEL memory for the specific channdl.
Completing the IRP.

Once the IRP has been completed, the “ReadDataChannel” thread will perform clean up operations
to close files and free memory before returning and thus closing the thread.

3-20

PCI10FR Windows NT Device Driver Software Definition Document

j A

]

pr——

Queue
Interrupt DPC
H Objects
A
Misc Control Board R/W ‘.I
Register Check/Disable s
FL-FIFO Interrupt ‘.‘

4.1
Interrupt
Service

Board R/W
Check FL
FIFO Almost

Status Register %

Empty Flag Routine (ISR
Board R/W
Main Control Check/Disable
Register [Y—~~——P2s Converter
Underflow
Data Channel 4.2
N Information Perform DMA
. Transfer of D3
Windows NT from EIEO
e vn seminns os semamem on 2n sameshs 20 CAll FTOM DPCmememm ae svmam » DPC
Queue

Data Channel
Information

Transfer and
Windows NT

Call from DPC.s mmememesae
Queue

i

o

H

i
Enable

FIFO
Interrupt
'

4.4
Synchronizg

Access to
FIFO Interrug
Mask

PCI Config R/

Get/Clear
Interrupt Status

Board R/W

Check/Disabl
FIFO Interrupt

Board R/W
Check FIFO
Almost Full Fla

PCI Config R/W
Setup and Start
V962PBC DMA

Engine

PCI Config R/W
Check DMA

Count for Zero
Value

Board R/W
Check/Enablée

FIFO Interrupt

Board R/W
Check/Enable
FL-FIFO Interrupt

Board R/W
Check/Enable
P2S Convert

Underflow

521-S/W-058

PcilnterruptStaty

Main Control
Register

Status Register

PCI Configuration
DMA Registers

PCI Configuration
DMA Registers

Main Control
Register

Misc Control
Register

Main Control
Register

Figure 3-5. Interrupt Services Task

321

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

3.8 Device Driver Interrupt Services Task

The Interrupt Services Task (IST) isresponsible for handling all interrupts originating from the
PCI10FR Prototype Board. Since Windows NT allows shared interrupts, the IST must also
quickly forward any interrupts that do not belong to the PCI10FR Prototype Board. The IST
conforms to the standard Windows NT device driver protocol of performing very little in the
interrupt service routine (ISR) and having the ISR queue deferred procedure calls (DPC’s) as
needed to complete the work at a much lower interrupt priority level.

Although the Forward Link FIFO and the P2S converter can generate interrupts, these interrupts
are generally masked off. The ISR does check for these interrupts, but currently it does nothing
more than disable them. There are currently no DPC’ s for handling these two interrupt conditions.
The rest of this section describes the typical return link FIFO servicing operation. This operation
can be broken down into five phases:

a ldlePhase

b. FIFO Service ISR Phase

c. DMA Transfer DPC Phase

d. DMA Engine Service ISR Phase
e. DMA Complete DPC Phase

3.8.1 Idle Phase

After adata channel has been opened, and while no DMA isin progress, the device driver software
waits for enough data to accumulate in one or more of the four 32-bit FIFO banks to generate an
interrupt.

3.8.2 FIFO Service ISR Phase

Upon receiving an interrupt, the interrupt service routine (1SR) first checks the V962PBC’ s PCI
Interrupt Status Register, as shown in Figure 3-5, to make sure that the interrupt originated from
the board. If the interrupt is not from the board, the I SR returns quickly and forwards the interrupt
back to the Windows NT operating system.

If the interrupt did originate on the board, the ISR determines whether the interrupt is due to
completion of a DMA operation or due to other causes on the board. If the interrupt was not due to
completion of aDMA operation, then Status Registers 1 and 2 are read to determine which of the
on-board sources of interrupt occurred. |f one of the four FIFO banks generated the interrupt due
to the almost-full flag being asserted, the ISR disables the FIFO's interrupt, queues a FIFO-
specific DPC to initiate aDMA operation to move data from the FIFO into host memory, clearsthe
V962PBC chip’s PCI Interrupt Status Register, and returns from the interrupt. Since any number
of the FIFO’s may need servicing at agiven time, the ISR checks all of them whether they
generated the interrupt or not. This makes the ISR much more efficient.

3-22

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

3.8.3 DMA Transfer DPC Phase

Since the Windows NT operating system will not allow the same DPC object to be in the system-
wide gqueue (FIFO) at the same time, four DMA transfer DPC objects are used — one for each data
channel (FIFO). When the ISR is complete, Windows NT lowers the interrupt priority level down
to Dispatch Level. It then checksto seeif there are any DPC’s on the queue. If there are, then the
first DPC on the queue gets called. If there are no DPC’s in the queue, then the interrupt priority
level isreturned to Normal Level.

Assuming that one of the DMA transfer DPC’s are called by the operating system, the DPC
performs the following sequential tasks, as shown in Figure 3-5:

a. Checksto seeif which, if any, DMA engineis currently freed up for servicing the FIFO.
If both DMA engines are in use, the DPC queues itself and returns.

b. If aDMA engineisavailable, the DPC calculates the number of map registers needed for
the data transfer.

c. Oncethe number of map registers has been determined, the DPC callsthe Windows NT
“loAllocateAdapterChannel” function to alocate an adapter channel, and to call the
“AdapterControl0” or “ AdapterControl1” functions (depending on which DMA engineis
being used) to actually do the work of setting up the DMA engine.

d. The*AdapterControl0” or “AdapterControl1” function flushes the Windows NT 1/0
buffers, obtains a physical address for the circular buffer by calling the “loMapTransfer”
function, sets up the V962PBC DMA engine for aDMA transfer, and then initiates the
transfer.

e. Oncethe“loAllocateAdapterChannel” function returns, then this DPC returns.

3.8.4 DMA Engine Service ISR Phase
When the DMA operation has completed, an interrupt will be generated and the ISR will once again

determine the cause. If theinterrupt is dueto aDMA operation completing, the ISR will clear the
DMA interrupt through the V962PBC chip’s PCI Interrupt Status Register and the Local Bus
Interrupt Control and Status Register. A DPC will then be queued to complete the transfer.
3.8.5 DMA Complete DPC Phase
The DMA complete DPC performs the following functions:

a. Checksthe DMA count register to make sure that it is zero.

b. Fushesthe adapter buffers using the “loFlushAdapterBuffers’ function.

c. Freesthe map registers.

d. Updatesthe memory pointers and countersin the DATA_CHANNEL structure.

e. Asynchronoudy notifies the user application that data has been successfully transferred
into host memory. It doesthis by setting the data event objects. |f the specific data event
object is already set, then the “ ReadDataChannel” thread has not serviced and cleared the

3-23

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

h.

memory space. In the case, a buffer overflow event is signaled to inform the
“ReadDataChannel” thread. Note that this overflow event does not signal that the FIFO
overflowed, but rather that the circular buffer overflowed. Currently, thereisno way to
detect a FIFO overflow condition without polling the unlatched flag register.

Free the DMA engine so that it may be used again.

Reenable the FIFO’ sinterrupt. This must be synchronized with the ISR. Four
synchronization functions — one for each FIFO — are used to synchronize enabling of
each FIFO’sinterrupt.

Return.

Once the DPC returns, the device driver goes back into an Idle phase.

Windows NT
Unload Cpmmand

54
Delete Devige
Object
and Device
Extension

53
Unmap Memor)
and Free Devjce
Resources

5.2
Disable Board
Interrupts

Destroy

PCI Config R/W
Disable Interrupts DFD 5 O

PcilnterruptConfip

Figure 3-6. Unload Device Driver Task

3-24

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

3.9 Device Driver Unloading Task

Unloading a device driver frees up all resources and actualy removes the device driver from
memory. To unload the PCI10FR Device Driver, type the following command at a command
prompt:

net stop pcilOfr

This command will cause the Windows NT 1/0O Manager to call the device driver's “Unload”
function. The “Unload” function, which is shown in Figure 3-6, performs the following tasks:

a. Deéetesthe symbalic links to the device driver.
b. Disablesthe PCI10FR Prototype Board' s interrupts.
Disconnects the interrupt vector using the “loDisconnectinterrupt” function.

c
d. Dereferencesall event objects stored in the device extension.

e. Unlocksall mapped memory and freesall MDL’s.
f. Unmaps the board memory from system space.

g. Unreports the resources that were assigned.

h. Deletesthe device object.

3.10 Device Driver Error Handling

The PCI10FR Device Driver checks for errors during the Load and Initialization Task. If any
errors occur, a print statement for the Microsoft WinDbg program is generated, all of the preceding
functions are reversed, all resources are freed, and the driver returns a
STATUS UNSUCCESSFUL message to the operating system.

In the Dispatch IOCTL Commands Task, if an unknown IOCTL command is requested, the device
driver will immediately return aSTATUS INVALID_PARAMETER error message. When the
open data channel IOCTL command is requested, an exception trap is used to trap any exceptions
raised when trying to probe and lock memory pages. If an exception does occur, the MDL will be
freedand aSTATUS ACCESS VIOLATION error message will be returned.

3-25

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Section 4. Implementation Data

4.1 Coding and Naming Conventions

All coding conventions and practices conform to the Software and Automation Systems Branch
C++ Style Guide, referenced in Section 1.5, to the maximum extent possible considering that the
PCI10FR Wrapper API, the PCI10FR Device Driver, and the PCI 10FR Debugger were all written
inC.

4.2 File Descriptions

The source code and header files for the PCI10FR project can be broken down into three main file
categories: files necessary to build the PCI10FR Wrapper API by itself; files necessary to build the
PCI10FR Device Driver; and files necessary to build the PCI10FR Debugger application, which
includes the PCI10FR Wrapper API. These files are described in the sections below.

4.2.1 File Descriptions for the PCILOFR Wrapper API

These are the files necessary to compile the PCI10FR Wrapper API:

a PCIFRNT.H (header file) contains the IOCTL definitions for the making callsto the
PCI10FR Device Driver, the DATA_CHANNEL structure definition, and al of the
function prototypes for the PCI 10FR Wrapper API

b. DRIVERTYPESH (header file) contains a set of define statements that create standard
names for variable types so that the PCI10FR Wrapper API can be used on other
platforms and operating systems, such as the Dec Alpha workstation.

c. OFFSETS.H (header file) contains a set of define statementsfor al of the PCI10FR
Prototype Board memory map offsets.

d. ROUTINES.H (header file) contains all of the function prototypes for the PCI10FR
Wrapper API, aswell as the PCI10FR Debugger application.

e. WRAPPER.H (header file) contains all of the PCI10FR Wrapper API function prototypes
contained in WRAPPER.C.

f. PCI.H (header file) contains the Microsoft Windows NT PCI configuration space
structure definition.

g. CHANNEL.H (header file) contains define statements and function prototypes for the
CHANNEL.C file.

h. WRAPPER.C (sourcefile) contains all of the PCI10FR Wrapper API functions, except
for the data channel functions and the load/save configuration functions..

i. CHANNEL.C (sourcefile) contains all of the data channel functions.

j. CONFIG.C (sourcefile) contains the load and save configuration functions.

4-1

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

4.2.2 File Descriptions for the PCI10FR Device Driver

These are the files necessary to build the PCI10FR Device Driver:

a

NTDDK.H (header file) contains the data structures and prototypes provided by
Microsoft in the DDK to build Windows NT device drivers.

STDARG.H (header file) defines ANSI-style macros for variable argument functions.
This header file is also provided by Microsoft.

PCIFRNT.H (header file) is the same file as mentioned in Section 4.2.1.

PCI10FR_DEV.H (header file) contains the device extension structure for the PCI10FR
device object that is created in CreateDevice, aswell asall of the function prototypes for
the PCI 10FR Device Driver.

VI6XPBC.H (header file) contains define statements for al of the PCI configuration
register offsetsin the V962PBC, as well as a structure definition for the V962PBC PCI
configuration space.

INTERRUPT.H (header file) contains all of the define statements used in the
INTERRUPT.Cfile

PCI10FR.C (sourcefile) contains all of the initialization functions that are called during
the loading of the PCI10FR Device Driver.

DISPATCH.C (sourcefile) contains the dispatch switch statements that handle IOCTL
calls from the user-mode application.

RWCONFIG.C (sourcefile) contains all of the functions that read and write to PCI
configuration space.

INTERRUPT.C (sourcefile) containsthe ISR, its associated DPC’s, and synchronization
functions.

SOURCES (type of makefile) contains information necessary to build the PCI10FR
Device Driver.

MAKEFILE (makefile) contains the makefile used to build the PCI10FR Device Driver.
Both the SOURCES and MAKEFILE must be in the same directory as the header and
source filesin order for the build utility to work properly.

4.2.3 File Descriptions for the PCIL0FR Debugger Application

These are the files necessary to build the PCI10FR Debugger application:

a
b

o

DRIVERTYPES.H (header file) isthe samefile as mentioned in Section 4.2.1.
PCI.H (header file) isthe same file as mentioned in Section 4.2.1.
PCIFRNT.H (header file) isthe same file as mentioned in Section 4.2.1.
OFFSETS.H (header file) is the same file as mentioned in Section 4.2.1.

4-2

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

e. ROUTINES.H (header file) isthe samefile as mentioned in Section 4.2.1.

f. NCO.H (header file) contains all of the define statements and structures necessary to
configure the Chrontel NCO Clock Chip.

g. FIFOFLAG.H (header file) contains all of the define statements and structures necessary
to read and to program the FIFO programmabl e flags.

h. RSROUTETBL.H (header file) contains the structure definition for the RS Routing Table
entries.

i. CHANNEL.H (header file) is the same file as mentioned in Section 4.2.1
j. WRAPPER.H (header file) is the same file as mentioned in Section 4.2.1.

k. STATSTR.H (header file) contains define statements and structure definitions for the
Virtual Channel statistics counts performed inthe STATS.C file.

. RSMACROS.H (header file) contains macro definitions for bit-wise manipulation of
RSEC Chip registers.

m. PIFSMACROS.H (header file) contains macro definitions for bit-wise manipulation of
PIFS Chip registers.

n. BOARDMACROS.H (header file) contains macro definitions for bit-wise manipulation of
PCI10FR board registers.

0. DEBUG.C (sourcefile) contains the main function, and provides the main menu for
performing all PCI10FR Debugger functions.

p. WRAPPER.C (sourcefile) isthe samefile as mentioned in Section 4.2.1.

g- SETUP.C (sourcefile) contains avariety of board setup functions.

r. CONFIG.C (sourcefile) isthe samefile as mentioned in Section 4.2.1.

s. PIFSCHIP.C (sourcefile) contains all of the functions that talk with the PIFS Chip.
t. RSCHIP.C (sourcefile) contains al of the functions that talk with the RSEC Chip.
u. FIFO.C (sourcefile) contains functions to directly read the return link data FIFO’s.

v. FIFOFLAG.C (sourcefile) contains functions to program the FIFO programmable flag
registers.

w. LOOPBACK.C (sourcefile) contains functions to write data directly into the PIFS Chip
and have it flow through the system.

X. CHANNEL.C (sourcefile) isthe same file as mentioned in Section 4.2.1.
y. NCO.C (sourcefile) contains functions to program the NCO Clock Chip.

z. SCANBUF.C (sourcefile) contains functions to scan an archived telemetry data file and
check for sync words and correct Virtual Channel sequence counts.

4-3

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

aa. STATS.C (sourcefile) contains functions to gather, count, and display Virtual Channel
statistics.

bb. DEBUG.MAK (makefile) isthe makefile for the PCI10FR Debugger application. This
fileis generated by the Microsoft Visua C++ Developer Studio application.

cc. DEBUG.MDP (project file) isthe project or workspace file for the PCI 10FR Debugger
application. Thisfileisgenerated by the Microsoft Visua C++ Developer Studio
application.

dd. DEBUG.NCB (network control block) is created and used by the Microsoft Visual C++
Developer Studio application when anew project or workspace file is generated.

I— PCI10FR
I— V10

— DEBUG

DEBUG

RELEASE

S SYS

Figure 4-1. Build Directory Structure

4.3 Building the Device Driver

Building the PCI10FR Device Driver under Windows NT 3.51 requires several Microsoft
products, including:

a. Microsoft Visual C++ 4.0

b. Microsoft Software Development Kit (SDK) - available through a subscription to the
Microsoft Developer Network.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

c. Microsoft DDK - available through a subscription to the Microsoft Developer Network.

Although there are other ways to build a Windows NT device driver, such as using C++ libraries
offered by third-party vendors and non-Microsoft compilers, this document will only describe the
“officia Microsoft” method.

All of the PCI10FR Device Driver files should be placed in a subdirectory under the “\ddk\src”
directory. The directory structure used to develop the PCI10FR Device Driver and the PCI10FR
Debugger is shown in Figure 4-1. A “pcilOfr” directory was created off of the “\ddk\src”
directory. Each version of the software was given its own directory. The PCI10FR Device Driver
files were stored in the “pci10fr\v1.0\sys’ subdirectory, and the PCI10FR Debugger files were
stored in the “pci10fr\v1.0\debug” subdirectory. All debug versions of the Debugger were stored
in the “debug\debug” subdirectory, and the release versions the Debugger were stored in the
“debug\release” subdirectory.

There are two options when building the PCI10FR Device Driver. One can build a checked
version of the driver, which contains debug information, or one can build a free version of the
driver. The choice is made by double-clicking the appropriate icon in the Windows NT DDK
program group.

Once the MS-DOS Console window appears, change to the directory containing all of the
PCI10FR Device Driver fileslisted above in Section 4.2.2. At the DOS prompt, type:

build -cef

The build function uses the nmake function of Microsoft Visual C++ to compile and link the driver
into a“sys’ file. Any errors are displayed on the screen. A “build.log” file is also generated that
contains all of the details of the build, including al warning and error messages.

After a successful build, the “pcil0Ofr.sys’ file must be moved or copied into the “drivers’
directory. For example, if one created a free version of the driver, one would type:

copy c:\ddk\lib\i386\free\pcilOfr.sys c:\winnt351\systems32\drivers
For achecked version of the driver, one would type:
copy c:\ddk\lib\i386\checked\pcilOfr.sys c:\winnt351\systems32\drivers

Once the driver has been moved into the “drivers’ directory, it must be registered. Registration of
adevice driver only needs to be done once as long as subsequent versions of the device driver do
not change the name of the driver or the names used in the CreateDevice function. The next section
describes the registration process.

Once the PCI10FR Device Driver has been registered and the computer has been rebooted, the
driver may be started. Starting the device driver may be done in several ways. One can type the
following command at an MS-DOS Console window:

net start pcilOfr
Similarly, the device driver may be stopped by typing:
net stop pcilOfr

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Alternatively, one can open the “Drivers’ utility under the “ Control Panel” and manually start the
PCI10FR Device Driver from there. This utility can also be used to change when the driver is
loaded. It can be set to load automatically on boot-up.

WARNING

Always remember to unload a loaded PCI10FR Device Driver
before copying anew version to the “drivers’ directory. Failureto
do so will cause the system to crash!

Further information about building and debugging a device driver can be found in the Win32 DDK
documentation referenced in Section 1.5.

4.4 Registering the Device Driver

After the PCI10FR Device Driver has been built and copied in the “drivers’ directory, it must be
registered in the Windows NT Registry. Thisregistration processis only required thefirst time a
new driver isintroduced, as long as the name of the driver and the names used in the CreateDevice
function do not change.

Thereisafile caled “PCI10FR.INI” that islocated in the same directory as the source files for the
PCI10FR Device Driver. This“ini” file contains information about when and how the PCI10FR
Device Driver should be loaded. Currently, thisfile tells the operating system that the driver will
be loaded manually. Rather than change thisfile, it is much easier to register the device driver
using the current file, and make any changes to the method of loading in the “Drivers’ utility under
the Control Panel applet.

To register the PCI10FR Device Driver, change directories to the directory containing the
pci10fr.ini file and type:

regini pcilOfr.ini

The“regini” utility is provided in the DDK and islocated in the “\ddk\bin” directory. If the DDK
has been properly installed, this directory is included in the PATH configuration. Once the
“regini” utility has been run, shutdown the computer and restart it. The PCI10FR Device Driver
should now be ready to be loaded.

Further information about registering a device driver can be found in the Win32 DDK
documentation referenced in Section 1.5.

4.5 Building the Device Driver Wrapper APl and Debugger

A Microsoft Developer Project (mdp) file has been created for the PCI10FR Debugger. Assuming
that al of the PCI10FR Debugger files have been placed in the directory structure shown in Figure
4-1, one can open the PCI10FR Debugger workspace within the Microsoft Visual C++ Developer
Studio application. The files within the PCI10FR Debugger workspace may be edited, rebuilt and
debugged using the standard procedures provided by the Developer Studio application. The
PCI10FR Wrapper API files may aso be compiled only and not linked into the PCI10FR
Debugger application.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

After the PCI10FR Debugger application has been built, one can start it from an MS-DOS Console
window or from the Developer Studio application. If one starts it from an MS-DOS Console
window, one needsto first change to the directory containing the debug.exe file, and then type:

debug

Appendix A contains a brief overview of the PCI10FR Debugger application.
NOTE

The PCI10FR Device Driver must already be |loaded before starting
the PCI10FR Debugger application. If it isnot, the Debugger will
immediately exit with an error message.

4.6 Error Code Definitions

Windows NT uses a standard set of status/error codes for its device driver function calls. Table 4-
1 lists some of the more common definitions. A complete list of Windows NT status/error returns
can be found in the “ ntstatus.h” file found in the Win32 DDK include directory.

Table 4-1. Standard Windows NT Status/Error Codes

Status/Error Codes Definition
STATUS_SUCCESS Value returned to the PCI10FR Wrapper API if the
IOCTL call was successful.
STATUS_UNSUCCESSFUL Value returned to the PCI10FR Wrapper API if the

IOCTL call was unsuccessful.

STATUS_INVALID PARAMETER |[Value returned to the PCI10FR Wrapper API if the
parameters passed in the IOCTL call were invalid.

STATUS_ACCESS_VIOLATION [Value returned to the PCI10FR Wrapper API if the
device driver was unsuccessful in probing and
locking down user-mode memory pages to be
used in DMA data transfers.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Section 5. Development Issues

5.1 Hardware Issues

5.1.1 V962PBC PCI Bridge Chip Revisions

There have been three revisions of the V962PBC since the project began: Revision BO, Revision
B1, and Revision B2. A copy of each V962PBC Change Notice has been provided in Appendix I.
Revision B2 solves almost all of the problems encountered in the previous revisions. However,
none of the B revisions support DMA chaining. Revision CO, which should be available in April
1997, will be the first V962PBC to support this feature.

5.1.2 Short PCI Clock Signal Trace

The PCI clock signal trace that goes directly from the PCI bus connector to the V962PBC is too
short. The PCI specification (Version 2.1) states that this trace must be 2.5-inches £ 0.1-inches

from the connector pad to a component. One of the PCI10FR Prototype Boards has had the clock
signal trace cut and a 2-inch wire inserted.

5.1.3 FIFO Overflow

Thereisno way of knowing whether areturn link data FIFO has overflowed without polling the
full-flag bits in the Board Control Register. These bits are not latched, so even checking themin
the ISR when servicing other data FIFO’ sis a hit-or-miss proposition.

5.1.4 Local Bus CPU-Emulation PLD’s

Several PLD’s are used to emulate chip select, acknowledge, and other CPU signals on the i960
local bus on the PCI10FR Prototype Board. Unfortunately, these PLD’s add two extra clock
cyclesin performing aread command, thus degrading system performance especially during DMA
transfers. In addition, the PLD controlling the read/write lines to the RSEC have problems with
bursts of write datato the RSEC. For this reason, the RSEC chip registers must be loaded one at a
time with separate write commands. The buffer write command (WriteDeviceUint32Buffer)
cannot be used since it will cause the RSEC chip registersto be corrupted.

5.1.5 Gateway 2000 Ultra-SCSI Disk Problem

The PCI10FR Prototype Board works fine up to 15 Mbps on a Gateway 2000 150 MHz Pentium-
Pro computer with a Fast SCSI hard drive, and on a Dell OptiPlex GXpro 200 MHz Dual Pentium-
Pro computer with an Ultra SCSI hard drive. However, a problem has been noted on a Gateway
2000 200 MHz Pentium-Pro computer with an Ultra SCSI hard drive. Telemetry data from the
board is successfully transferred to host memory via DMA, but somehow the data gets corrupted
when writing it to the hard drive. Garbage bytes are introduced in the datafile. Both the Dell and
Gateway 2000 200 MHz computers are using Adaptec 2940 Ultra SCSI adapters with the same

51

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

setup parameters and the same driver. This problem has not been fully explored due to time
constraints. It may just be afaulty disk or motherboard.

5.2 Software Issues

5.2.1 Porting the PCI10FR Device Driver to Windows NT 4.0

The PCI10FR Device Driver and the PCI10FR Wrapper API have been developed and tested under
the Windows NT 3.51 operating system. The software should port directly to Windows NT 4.0
without any changes other than changing the SDK and DDK to the Windows NT 4.0 versions.
However, the software has not been ported yet because the Windows NT 4.0 operating system,
Service Packs, and driver development environment are till relatively new and bug-ridden.

5.2.2 Processing Weather Data Formats in the PIFS Chip

When processing weather dataformats, it is very important to write a non-zero value in the 4-bit
Word Size B (Wdszb) field (bits 28 - 31) of the PIFS Chip Setup Register 20 even if a second sub-
block is not required. Failure to do so will result in either one or no frames of weather data being
output from the PIFS Chip.

5.3 Windows NT Performance Issues

One of the reasons for developing the PCI10FR Prototype Board was to measure the performance
of Windows NT as a soft real-time operating system (RTOS). Most of the systems developed
within Code 521 have used atrue RTOS, like VxWorks. After conducting performance tests on
the PCI10FR Prototype Board and measuring ISR and DPC latencies, the conclusion is that
Windows NT 3.51 is barely adequate for this purpose.

Figure 5-1 shows one of the performance test setups that was used to measure ISR and DPC
latencies using programmed /O to move data from one of the return link data FIFO’ s to host
memory and to archive this data on the hard drive. Figure 5-2 shows the timing diagram that
resulted from thistest. The four programmable bits in the Miscellaneous Control Register are
linked to test points on the board. One of these bits was set in the ISR as soon as it was entered,
and was subsequently cleared on exiting the routine. Another bit was set in the DPC on entry, and
was cleared on exiting the routine. Table 5-1 shows the results of this performance test using
programmed |/O data transfers.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

——1

[]
86-100MHz

4
a=———
=] = S0l
oo 000
) L JL] u= o
Data Simulator PCI10FR Board
10.0 Mbps Version 10.0 pcilOfr.sys
232 bytes / frame test232.cnf
Uses FIFO1 only

FIFO1 AF Flag = 1024
256 32-bit words per DPC

LY

HP 16500A
Logic Analyzer

F1FF = FIFO1 Full Flag

F1AF = FIFO1 Almost Full Flag
ISR = Interrupt Service Routine
DPC = Deferred Procedure Call
F10E =FIFO1 Output Enable
FIWEN = FIFO1 Write Enable

Figure 5-1. Performance Test Setup for Programmed I/O Data Transfers

N tisrl
FIFO1 Almost

Full

—1t —
_ isr
Interrupt Service

Routine

tdpcl_>
Deferred Procedure
Call (DPC)

tdpc

FIFO1 Output
Enable

—_—

l-'total

Figure 5-2. Data Transfer Timing Diagram Using Programmed /O

5-3

PCI10FR Windows NT Device Driver Software Definition Document

521-S/W-058

Table 5-1. Performance Test Results Using Programmed 1/0O

Time Element | Minimum (usecs) Maximum Average (usecs)
(usecs)

t-isrl 9.280 81.80 10.89

t-isr 44.32 110.2 47.81

t-dpcl 7.680 39.68 8.470

t-dpc 145.4 177.1 152.8

t-total 206.68 408.78 219.97

Figure 5-3 shows another performance test setup that was used to measure ISR and DPC latencies
using DMA transfers of data from one of the return link data FIFO’sto host memory. Again, this
datawas also archived on the hard drive. Figure 5-4 shows the resulting timing diagram. Again,
one of the programmable bits was set on entry in the ISR, and cleared on exiting the routine.
Another bit was set in the DmaReadFifolDpc routine, which initiatesa DMA transfer. The bit was
not cleared until a second DPC, the Dma0OReadCompleteDpc, had completed. ThisDPC iscalled
by the ISR when the DMA operation is complete. Table 5-2 shows the results of this performance
test using DMA data transfers. The numbers in the Minimum column reflect a one-time
measurement and not a true minimum. No maximum or average times were obtained for some of
the parameters. However, maximum and average times were obtained for the length of the DPC.
These values are shown in their respective columns.

Note that only 256 32-bit words were transferred per DPC using programmed |/O, versus 2900
32-bit words transferred using DMA. The effective average transfer rate using programmed 1/O is

0.86 nrsecs/32-bit word, while the effective transfer rate using DMA is 0.97 nsec/32-bit word.

I > Pentium Pro > m" © 9
- 150MHz]
0 o | HP 16500A
- ge=alil | Logic Analyzer
Data Simulator PCI10FR Board
5.0 Mbps Version 16.0 pcil0fr.sys FIFF = FIFO1 Full Flag
232 bytes / frame test232.cnf FLAF = FIFOL Aimost Full Flag
Uses FIFO1 only ISR = Interrupt Service Routine
FIFO1 AF Flag = 1196 DPC = Deferred Procedure Call
2900 32-bit words per DMA FI1OE = FIFO1 Output Enable
FIWEN = FIFO1 Write Enable

Figure 5-3. Performance Test Setup for DMA Data Transfers

5-4

FIFO1 Almost
Full |

Interrupt Service
Routine

Deferred Procedure

Call (DPC)

FIFO1 Output
Enable

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058
4 , tdmal1>| |‘— ; | L
isrll T dmaIZ_' T
|
'_tisrl_' |'_tisr2_'
tdpcll_. — tdpclz_' —
| L
tdpc
I |
L t |
I dma I
L t |
I total '

Figure 5-4. Data Transfer Timing Diagram Using DMA

Table 5-2. Performance Test Results Using DMA

Time Element | Minimum (usecs) Maximum Average (usecs)
(usecs)
t-isrll 6.201
t-isrl 35.00
t-dpcll 7.000
t-dmall 97.00
t-dma 2295
t-dmal2 39.84
t-isr2 30.24
t-dpcl2 295.8
t-dpc 2757.9 4534 2882
t-total 2806.1

These test results indicate that moving telemetry data using DMA transfers takes about the same
amount of time as using programmed 1/O. There are several reasons for this.

First, as was discussed in Section 5.1.4, the CPU-emulation PLD’s on the PCI10FR Prototype
Board add two extrawait cycles for every read. This seriously degrades the performance of the
board when transferring data via DMA.

5-5

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Second, since Revision B2 of the V962PBC does not support DMA chaining, the PCI10FR
Device Driver uses the standard Windows NT map registers for emulating DMA chaining.
Windows NT maps the non-contiguous user-mode memory space into a dedicated area of
contiguous system memory. During aDMA cycle, telemetry datais transferred viaDMA from a
return link data FIFO into this contiguous memory, effectively avoiding the need for DMA
chaining. Windows NT then copies this data from the contiguous memory into the user-mode
memory space. The advantage of this method is that Windows NT can provide support for boards
that do not support DMA chaining without multiple interrupts. The disadvantage is that this
method does not support true DMA. The CPU isstill involved in the process of copying the data
from one memory location to another. Improved performance should be achieved once Revision
CO0 of the V962PBC, which directly support DMA chaining, isinstalled on the board.

One can see by looking at Table 5-1 and Table 5-2 that the average time per DPC is very close to
the minimum time. The maximum time, however, is amost double the minimum time. One
reason for thisisthat all DPC’ s within the entire system are queued into one FIFO queue. This
means that the PCI10FR DPC'’s are inserted in the queue along with the video card’s DPC'’s, the
network card’s DPC’s, the keyboard’s DPC'’s, etc.. Thereisaso no way to prioritize these
DPC'sor toinsert aDPC is a particular location within the DPC queue. Only two commands are
provided by Microsoft: insert aDPC at the rear of the queue, or delete a DPC from the queue.

Another reason for the occasional doubling of time required to service aDPC isthat Windows NT,
like many operating systems, performs garbage collection on a periodic basis. This means that
Windows NT can and will stop everything it is doing to free up memory. In addition, the
Windows NT Virtual Memory Manager is constantly busy paging memory to and from the hard
drive. Not only does this require interrupts and DPC’s, but it also causes the hard drive head to
move back and forth from the paged memory file to the file being used to archive the telemetry data
being transferred to host memory. Thereis nothing that can be done about garbage collection or
the paging of memory. However, one can store telemetry data on a different hard drive than the
one being used by Windows NT for paging.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Section 6. Testing and Debugging

6.1 Test Description
The PCI10FR Prototype Board was designed as a prototype board to:
a. Test the new PIFS Chip.
b. Testthe V962PBC.
c. Testtheuse of PCI bustechnology.
d. Test the performance of Windows NT as a soft real-time operating system.

e. Apply lessonslearned to the development of the RLPC and other Desktop Satellite Data
Processor (DSDP) PCI boards.

Since the PCI 10FR Prototype Board is a prototype, formal test plans and procedures were never
prepared. However, the PCI10FR Debugger application was developed to test all of the features
of the board. A brief user’s guide for the PCI10FR Debugger is provided in Appendix A.

6.2 Test Elements

The following list describes the hardware and software necessary to test the PCI10FR Prototype
Board:

a. A high-end computer with a Pentium or Pentium-Pro microprocessor, a PCI local bus
with at least one free dot, 32-Mbytes of RAM, a 2-Gbyte fast hard drive (an ultra-wide
SCSl driveis preferred), a video monitor, a keyboard, and a mouse.

b. Microsoft Windows NT 3.51 should be installed on the computer.
c. A PCI10FR Prototype Board should be installed in one of the free PCI dots.

d. A source of CCSDS and weather data should be available, along with the necessary
hardware to output this datavia RS-422 at various data rates up to 15 Mbps.

e. Alogic analyzer ishighly desirable for measuring ISR and DPC latencies.

f. ThePCI10FR Device Driver should be installed in the “Drivers’ directory, registered with
the Windows NT Registry and loaded. See Sections 4.3 and 4.4 of this document for
information concerning building the PCI10FR Device Driver, registering it, and loading
it.

g. ThePCI10FR Debugger application should be installed.

6.3 Results

The PCI10FR Prototype Board was thoroughly and successfully tested with CCSDS data using
the PCI10FR Debugger application. Test data was processed by the board, the data was

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

transferred to host memory via DMA, and the data was archived to a hard drive. A datarate of 15
Mbps on the Dell OptiPlex GXpro Dual CPU 200 MHz computer was achieved with no errorsin
thedata Beyond thisrate, the return link data FIFO' s started overflowing.

Very little testing was performed with weather data, and no structured testing was done with the
forward link command function.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix A.
PCI10FR Debugger User’'s Guide

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix A.PCI10FR Debugger User’s Guide

A.1 Introduction

The PCI10FR Debugger application was written to fully debug all aspects of the PCI10FR
Prototype Board. This section provides a brief user’s guide for the program.

PCI110FR DEBUGGER

MAIN MENU
** (0) Board Status (C) PIFS Status alaled
** (1) Reset All Status (D) PIFS Reg Dump alaled
** (2) Save Configuration to File (E) ReedSolomon Status felioied
** (3) Load Configuration (F) ReedSolomon Reg Dump alaled
** (4) ResetBoard/Test Registers (G) Display Fifo Buffer X alaled
** (5) Rate Test (H) Dump all Fifo"s to Memory ***
** (6) Display Config Space (1) Set Fwd Link FIFO Freq. alaled
** (7) Test Data Channels (J) View/Set FIFO Flags alaled
** (8) Forward Link Loopback Test (K) Test Block Read/Write faladed
** (9) Set PIFS for Weather (L) Set Routing Addr. felioied
** (A) Read RS routing table RAM (M) Reset All Fifo"s felioied
** (B) Load Routing Table Ram (S) Scan & Dump Buffers felioied
** (U) File Scan Routines (P) Interrupt Test faladed
** (Y) Dump Buffer to File (T) QuickScan Buffer for Sync®s***
** (Z) Toggle Debug Flag (V) Data Status folokel
** (™) Quit(Save Config in config.cnf) (&) Quit W/0 Saving Config felioied

* ok H*okk

Select next command:

A.2 Main Menu

Figure A-1. Main Menu

The Main Debug Menu is displayed when the DEBUG program is started. The displays generated
throughout this section show the results of capturing a CCSDS-simulated data set. The data set
contained 128 232-byte Frames with Reed-Solomon Encoded data (Interleave 1) with aframe sync

A-1

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

of $1ACFFC1D. The data set was sent 400 times so that 51200 frames were input to the card.
The data set contained seven different Virtual Channel Identifier’s (VCID’s) (0-5,7). Each frame
also contained packet data, but thisis beyond the scope of this document.

Throughout this section, anytime a number is preceded by an $, this means it is a Hexadecimal
Number.

All bit field selections will toggle that bit and redisplay the menu. Multiple bit fields will prompt
for either Hexadecimal or Decimal values.

Some menu entries require you to type a 99 to exit. If you accidentally type an ASCII character,
the display may start to roll. If it does, then you must type <CTRL>-C to exit the program and
then restart it.

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.3 Board Status Menu

Main Control Register = f7fc8006

Status Register O = FFfff
Status Register 1 = fffff
Status Register 2 = f00001c3
Programmable Flag Reg = ffffffff
Misc Control Reg = FFFF0200
BOARD STATUS
Julian day = 524 Mar 18,1997 08:25:53
PIFS Chip (CCSDS) Reed Solomon (PassThrough)
Lock Frames 51200 Input Frames 51200
FlyWheel Frames 3 Long Frames 0
BackToSearch Frames 1 Short Frames 0
CRC Errors 0
Search Mode
Input Data Rate 12 .4Mbps
Channel MC Count MC Seq Errors
1 51200 399
2 0 0
3 0 0
4 0 0
VCID Channel_1 Channel_2 Channel_3 Channel_4
Count SeqErr Count SegErr Count SeqErr Count SeqErr
0 1600 399 0 0 0 0 0 0
1 1600 399 0 0 0 0 0 0
2 12000 399 0 0 0 0 0 0
3 12000 399 0 0 0 0 0 0
4 12000 399 0 0 0 0 0 0
5 12800 399 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 1600 399 0 0 0 0 0 0
Total VCID"s = 51200
Total Vcid Seq Errors = 2793

Enter [QJuit, Any other to Board Menu

Figure A-2. Board Status Menu

Entering a 0 from the main menu gives you a display of the board’ s complete status. This display
updates every few seconds.

The Board registers are displayed at the top, then the PIFS and Reed-Solomon Status are
displayed, the master channel sequence and VCID counts are displayed, and finaly the Total
VCID’sand VCID errors are displayed. Only if achannel is opened will the master channel and
VCID counts be displayed.

Entering a Q will return you to the Main menu. Any other character will bring up the Board Menu.

A-3

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.4 Board Menu

Board Menu (Any Character except Q from Board Status Display)

Main Control Register = f7fc8006

Status Register O = fFFf0

Status Register 1 = ffff0

Status Register 2 = f00001c3

Programmable Flag Reg = ffffffff

Misc Control Reg = FFFF0200

FIFO # Empty Almost Empty Almost Full Full
1 KXk
2 *kk
3 E
4 *kk

[0] ...Reset PIFS Chip [1] ..-Reset RS Chip

[2] -.-Reset PIFS/RS Fifo [3] ---Reset FIFO Stackers

[4] ...Stackmode (Pad) [5] ..-Stackorder (lluu)

[6] ---Reset FIFO # 1 [7] ---Reset FIFO # 2

[8] ---Reset FIFO # 3 [9] .--Reset FIFO # 4

[A] -.-TXSEL (4220ut = FLOut) [B] ..-LEDBIT -*-

[C] ...E/D Fifo 1 Int. (Enabled) [D] -..E/D Fifo 2 Int. (Disabled)

[E] -.-E/D Fifo 3 Int. (Disabled) [F1 -.-E/D Fifo 4 Int. (Disabled)

[G] -.-NCO Clk (FITestClk) [H] --.-Reset FwdLink Fifo

[1] -.-Reset FL P/S Converter [---

[R] -..-Reset PIFS/RS Status [Q] ... Quit

Enter Selection...

Figure A-3. Board Menu

This display shows the Board register values and the FIFO Flag Status. It also gives you the
ability to Reset the Chips(PIFS,RS), Reset Chip Status(PIFS,RS), Reset al FIFOs,
Enable/Disable interrupts, turn on/off the Light Emitting Diode (LED), and set Stacker order and
mode.

Entering a Q will return you to the Board Status Menu.

A-4

PCI10FR Windows NT Device Driver Software Definition Document

A.5 PIFS CCSDS Status Menu

PIFS CCSDS Status Menu (C)

Parallel Integrated Frame Sync(PIFS)

STATUS REGISTERS

Register[00]. ..c00000e7 Register[01]...c0006001
Register[02]...00000003 Register[03]...98dd019d
Register[04]...00000000 Register[05]...00000000
Register[06] . ..00000000 Register[07]-..0000c800
Register[08]...00000000 Register[09]...0000c800
Register[10]...00000003 Register[11]...00000001
Register[12]...00000000 Register[13]...00000000
Register[14]...00000000 Register[15]...00000000
Register[16]...00000000 Register[17]...00000000

SETUP REGISTERS
Register[18]...0804c2c0O Register[19]...lacffcld
Register[20]-..00000000 Register[21]...FFFFffff
Register[22]...00000000 Register[23]...20000003
Register[24]...000000e7 Register[25]...041400e7
Register[26]...00000000 Register[27]...00000000
Register[28]...0000375a Register[29]...019b3d58
Register[30]...00030450 Register[31]...00000000
Julian Day 0 00:03:55

Setup Register[18]...0804c2c0

Check Frames 0 FlyWheel Mode
Lock Frames 51200 CCSDS
Flywheel Frames 3 Chip Enabled
Back To Search 1 Serial Input
CRC Errors 0 Serial Port [0] Input
Inverted Frames 0] Timeout.. ~3lmsec
Sync Errors 0 NRZ-L Input
Slip Errors 0 Input Data Rate 12.38Mbps
Sync Errors FrameSync 0 FrameLength. .232
Slip Errors FrameSync 0 SyncPattern. . .lacffcld

Output Mode Word
PwenoutO.. Lock Frames

[R]eset Status Registers
[P]arameter Change CCSDS
[QJuit, Return to Main Menu

EOF Pin Enabled

[T]oggle Chipgo
[S]et Pifs Time
[U]pdate Status Page

Figure A-4. PIFS CCSDS Status Menu

521-S/W-058

Entering a C from the main menu gives you adisplay of the PIFS CCSDS Status (if Chipmode-
Register 18 bit 27 is set to a 0) or the PIFS Weather Status (if Chipmode-Register 18 bit 27 is set
toal) Menu.

All the Status Registers($0-$17) and Setup Registers($18-$31) are displayed at the top with status

and setup information displayed next.
Entering: U Updates the status counts.

R Resets the status counts to zero.

A-5

PCI10FR Windows NT Device Driver Software Definition Document

Q T = O»

Loads Timeinto PIFS Chip.
Toggles the PIFS Chip Enable bit.
Takes you into the Parameter Change Menu.

Quit and return to the Main Menu.

A-6

521-S/W-058

PCI10FR Windows NT Device Driver Software Definition Document

A.6 PIFS CCSDS Parameter Menu

PIFS CCSDS Parameter Menu (P from Pifs Status menu)

PIFS CCSDS Parameters

[0].. CHIPGO 1 [1].. CHIPMODE 0
[2].. RESYNC 0 [3].. RSSTATUS 0
[4].. INTRST 0 [5].. SYNCERRST 0
[61.. ASYNCBYPASS 0 [71.. INPUTSEL 1
[8]1.. SERIALSEL 0 [9].. TIMEOUTEN 1
[A].. TIMEOUTSEL 4 [B].. NRZSEL 0
[C].. RATESEL 2 [D].. RATEGO 1
[E].. SENSE 1 [F1.. PERIODEN 0
[G].. PERIODMODE 0 [H].. PERIODCLR 0
[1]1.. PERIODRATE 0 [J1.. SYNCSIZE 32
[K].. UPPERSYNCMARK lacffcld [L].. LOWERSYNCMARK 0
[M].. UPPERSYNCMASK FEEFFFFF [N].. LOWERSYNCMASK 0
[0].. FLYWHEELTOL 3 [P].. CHECKTOL 0
[R].. ERRTOLO 0 [S].. SLIPTOLO 0
[T].. ERRTOL1 0 [U].. SLIPTOL1 0
[V]1.. FRMLENO 231 [W].. FRMLEN1 0
[X].. CRCEND 231 [Y].. CRCOFFSET 4
[z].. CRCSETCLR 1 ['].. CRCEN 0
[@].. BESTMATCHEN 0 [#].. BTDEN 0
[$]1.. BTDOFFSET 4 [1.. RUNMODE 0
[~].. DAYCOUNTER 14170 [&].. PFIELD 0
[*1.. PFIELDEN 0 [(].. INTEXTSEL 0
D1.. TIMELOAD 0 [_].. MSOFDAY 26951000
[+].. STATUSLEN 0 [11.. STATUSEN 0
[>1.. EOFEN 1 [=].. SOFEN 0
[-1.. OUTMODE 1 [<].. TRAILERORDER 0
[:71.. SCLFMASKO 4 [{].. SCLFMASK1 0
[}].. TIMELEN 3 [:].. TIMEEN 0
[.]1.. USOFMS 0

Enter Selection to Change

521-S/W-058

Figure A-5. PIFS CCSDS Parameter Menu

The PIFS-CCSDS Parameter Menu allows you to completely configure the PIFS chip for CCSDS
processing. Refer to the PIFS hardware document for explanations of each field.

Entering a Q will return you to the Main Menu.

A-7

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.7 PIFS Weather Status Menu

PIFS Weather Status Menu (C from main Menu & CHIPMODE = 1)

Parallel Integrated Frame Sync(PIFS)

STATUS REGISTERS

Register[00]-..00000000 Register[01]...e8000000
Register[02]...00000007 Register[03]...ff87023a
Register[04]...00000000 Register[05]...00000000
Register[06] . ..00000000 Register[07]-..00000000
Register[08]...00000000 Register[09]...00000000
Register[10]...00000000 Register[11]...00000000
Register[12]...00000000 Register[13]...00000000
Register[14]...00000000 Register[15]...00000000
Register[16]...00000000 Register[17]...00000000
SETUP REGISTERS
Register[18]...04000000 Register[19]...00000000
Register[20]-..00000000 Register[21]...00000000
Register[22]...00000000 Register[23]...00000000
Register[24]...00000000 Register[25]...00000000
Register[26]...00000000 Register[27]...00000000
Register[28]...00000208 Register[29]...036b36b0
Register[30]...00170000 Register[31]...00000000
WEATHER Data Chip Disabled
Parallel Input Port [O] No Input Data
Timeout Disabled
Output Mode Byte EOF Pin Disabled
PwenoutO.. no Frames
OPTIONS
Reset [S]tatus Registers Toggle [E]nd of Frame Enable
[T]oggle Chipgo Parameter [C]hange
[PJWENOUTO Change [U]lpdate Status Page
[QJuit,Return to Main Menu [R]egister Change

Figure A-6. PIFS Weather Status Menu

The PIFS Weather Status Menu is similar to the CCSDS menu in that it displays the Status and
Setup registers, some setup information, and then an Options area. The options are the same asthe
CCSDS menu, although the character entered may be different.

Thismenu is only entered if the Chipmode (Register18 Bit 27) issetto a 1.

A-8

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.8 PIFS Weather Parameters Menu

PIFS Weather Parameters (C from PIFS Status & CHIPMODE = 1)

PIFS Weather Parameters
Reg_ 18 04000080

[0]--. CHIPGO 0 [1]-- CHIPMODE 1
[2]-- RESYNC 0 [3]1-- RSSTATUS 0
[4]-- INTRST 0 [5]1-- SYNCERRST 0
[6]-- ASYNCBYPASS O [7]-- INPUTSEL 0
[8]-- SERIALSEL 0 [9]-- TIMEOUTEN 0
[10].. TIMEOUTSEL O [11]-.. NRZSEL 0
[12].. RATESEL 0 [13]-.. RATEGO 1
[14] .. SENSE 0 [15]-.. PERIODEN 0
[16].. PERIODMODE O [17]-. PERIODCLR 0
[18].. PERIODRATE O
Reg_19 00000000
[19].. PNSET 0 [20]-.. PNENB 0
[21].. PNDECOD 0 [22] .. PNENBI 0
[23] .. PNENAI 0 [24] .. PNSHIFTB 0
[25]-- PNSHIFTA 0 [26]-. STWDSET 0
[27] .. SYNC24EN 0 [28] .. WDCOMP 0
[29].. PACKDATA 0 [30].. MSB 0
[31]-.. FLFRMHD 0 [32] .. REDUNC 0
[33]-- WSNIBBL 0 [34]-. WSFRMHD 0
[35]-. WSFLNTH 0 [36]-. FILBITEN 0
[37]-. CRCSET 0 [38]-- CRCENA 0
[39].. CRCENB 0 [40] .. BLOCKCT 0
[41].. ODDEVEN 0 [42] .. SUBLKCT 0
[43].. FLFIELD 0
Reg_20 00000000
[44] .. WDSZB 0 [45]-. WDSZA 0
[46].. HEADSZ 0 [47]-. FILBITS 0
Reg 21 00000000
[48].. POLYB 0 [49]-.. POLYA 0
Reg 22 00000000
[50].. BLKSZB 0 [51]-.. BLKSZA 0
Reg_23 00000000
[52].. SYNCLNTH 0 [53]-- CRCPOLY 0
Reg_24 00000000
[54] .. WSFLOFF 0 [55]-- SYNCWRDB 0
Reg_25 00000000
[56]-.. FLFOFF 0 [57]-- SYNCWRDA 0
Reg_ 26 00000000 Register 27 O
[58]-. MASKB 0 [59]-. MASKA 0

Enter Selection to Change or 99 to Quit

Figure A-7. PIFS Weather Parameter Menu

The PIFS Weather Parameter Menu allows you to completely configure the PIFS chip for Weather
Data processing. Refer to the PIFS hardware document for each field setting.

A-9

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.9 PIFS Register Dump

PIFS Register Dump (D from Main Menu)

Reg[00] c00000e7 Reg[18] 0804c2cO
Reg[01] c0006000 Reg[19] lacffcld
Reg[02] 00000009 Reg[20] 00000000
Reg[03] f37c015a Reg[21] fFFfffff
Reg[04] 00000000 Reg[22] 00000000
Reg[05] 00000000 Reg[23] 20000003
Reg[06] 00000000 Reg[24] 000000e7
Reg[07] 0000c800 Reg[25] 041400e7
Reg[08] 00000000 Reg[26] 00000000
Reg[09] 0000c800 Reg[27] 00000000
Reg[10] 00000003 Reg[28] 0000375a
Reg[11] 00000001 Reg[29] 019b3d58
Reg[12] 00000000 Reg[30] 00030450
Reg[13] 00000000 Reg[31] 00000000

Reg[14] 00000000
Reg[15] 00000000
Reg[16] 00000000
Reg[17] 00000000

Enter Register # to Write or 99 to Exit

Figure A-8. PIFS Register Dump Menu

The PIFS Register Dump Menu displays the PIFS Status Registers ($0-$17) and the PIFS Setup
Registers ($18-$31). Only registers $18-$31 are writeable.

Enter the Register # then the Hexadecimal value to be written. 1t will keep prompting you until you
enter a 99 to return to the main menu.

A-10

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.10 Reed-Solomon Status Display

Reed Solomon Status Display (E from Main Menu)

Mode. .PassThrough

Chip Enabled
Input Frames
Long Frames
Short Frames

REED-SOLOMON Status Routine

51200 Frame Length 232
0
0 Timeout 1/2 Sec

Quality Annotation OFF

[E]nable/Disable RS Chip [P]arameter Change

[R]eset Status Registers

[S]et Reed-Solomon Mode

[C]lhange Frame Length/CodeWord ReedSolomon Register Du[m]p

[U]pdate Status Page

[IInterleave change

[T]oggle Quality Annotation [QJuit, Return to Main Menu

Figure A-9. Reed-Solomon Status Display

The display shows the Reed-Solomon statistics and some setup parameters.

Entering: E

< v 4 Cc O nw =T

Toggles the chip enable hit.

Resets the statistics to zero.

Allows you to set the Reed-Solomon Error Detection/Correction Mode.
Changes the Frame and Codeword Size of the incoming Data.

Updates the statistics.

Toggles the Quality Annotation Bit (Register 26 Bit 12).

Changes any Reed-Solomon Parameter (Reed-Solomon Parameter menu)
Reed-Solomon Register Dump/Change.

Changes Interleave.

A-11

PCI10FR Windows NT Device Driver Software Definition Document

A.11 Reed-Solomon Parameter Menu

Reed Solomon parameter menu (P from RS Status Memu)

Register 21

Reed Solomon Parameters

[0].. INTERLEAVE 0 [1]-- ENCLRREG5_20 0
[2]1.. ENPEROUTQA 0 [3]1-- INTIMEOUTEN (0]
[4].. CONV_DB 0 [5]-- DIRACCEN 0
[6]-- OUTMODE 0 [7]1-- INPMODE 0
[8]1.- ERRDET106EN 0 [9]-- ERRDET255EN 0
[10].. UPMODEEN 0 [11].. UPMODEPROC (0]
[12].. CHIPEN 0
Register 22
[13].. TIMEOUTSEL 0
[14].. ENCDATAOFF 0 [15]-. CWLNTH (0]
Register 23
[16]-.. OUTMASK 0 [17].. FRMLNTH 0
Register 25
[18] .. RSTSTATUS 0 [19].. EOFEN (0]
[20].. SOFEN 0 [21].. ROUTFUNCTEN 0
[22].. ROUTBASEADD 0
Register 26
[23].. MASKOFFQA 0 [24].. INTRESET 0
[25].. SEL255STSINFO 0 [26].. ASSBOTHCS 0
[27] .. NOOUTPROC 0 [28] .. EN106ERRCORR (0]
[29].. EN255ERRCORR 0 [30].. SELPERIODRATE 0
Register 27
[31]-. REJUNROUTFRM 0 [32].. REJUNCORRFRM 0
[33]-- REJSHORTFRM 0 [34]-.. REJLONGFRM (0]
[35]-. BASEADDRQA 0
Register 28-31
[36].. STATANNOTREG1 0 [37]-.. STATANNOTREG2 0
[38].. STATANNOTREG3 0 [39].. STATANNOTREG4 (0]
Register 32-39
[40].. OUTLNTHREG1 0 [41].. OUTADDRREG1 (0]
[42].. OUTLNTHREG2 0 [43].. OUTADDRREG2 0
[44] .. OUTLNTHREG3 0 [45]-. OUTADDRREG3 (0]
[46] .. OUTLNTHREG4 0 [47].. OUTADDRREG4 0

[99] Quit Routine

Enter Selection

521-S/W-058

Figure A-10. Reed-Solomon Parameter Menu

The Reed-Solomon Parameter Menu allows you to completely configure the Reed-Solomon chip
for CCSDS processing. Refer to the Reed-Solomon hardware document for explanations of each
field.

Entering aQ will return you to the Main Menu.

A-12

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.12 Current Reed-Solomon Mode Menu

Current Reed Solomon Mode (S from RS Menu)

CurrentReed-Solomon Mode. .PassThrough

Enter New Reed Solomon Mode
[0] Pass Through
[1] Enable(255,223) Detection
[2] Enable(255,223) Detection & Correction
[3] Enable(10,6) Detection
[4] Enable(10,6) Detection & Correction
[5] Enable Both Detection & Correction

Figure A-11. Current Reed-Solomon Mode Menu

The Current Reed-Solomon Mode Menu shows you the mode of the Reed-Solomon chip and
allows you to change modes. Refer to the Reed-Solomon hardware reference document for
explanations of each mode.

A-13

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.13 Reed-Solomon Register Dump

Reed Solomon Register Dump (E from Main Menu,or R from RS Menu)

Reg[00] ffff0010 Reg[21] ffffl1l321
Reg[01] FFFFO000 Reg[22] ffffade3
Reg[02] fFff0000 Reg[23] ffffale7
Reg[03] ffff0000 Reg[24] ffff0000
Reg[04] ffFf0000 Reg[25] ffff5004
Reg[05] ffff0000 Reg[26] ffff1000
Reg[06] ffffc800 Reg[27] ffff00e8
Reg[07] fffF0O000 Reg[28] ffff0000
Reg[08] ffFf0000 Reg[29] fFff0000
Reg[09] ffff0000 Reg[30] FFFF0000
Reg[10] ffFFO000 Reg[31] FFfFF0000
Reg[11] ffFF0O000 Reg[32] ffff00e7
Reg[12] ffFF0O000 Reg[33] FFFf0000
Reg[13] ffff0000 Reg[34] ffff0000
Reg[14] ffFf0000 Reg[35] FFff0000
Reg[15] ffff0000 Reg[36] fFff0000
Reg[16] ffFF0O000 Reg[37] FFFF0000
Reg[17] ffFF0O000 Reg[38] fFff0000
Reg[18] ffFf0000 Reg[39] FFff0000

Reg[19] FFFFO000
Reg[20] FFFFO000

Enter Register # to Write or 99 to Exit

Figure A-12. Reed-Solomon Register Dump

The Reed-Solomon Register Dump Menu displays the Reed-Solomon Status Registers ($0-$20)
and the Reed-Solomon Setup Registers ($21-$39). Only registers $21-$39 are writeable.

Enter the Register # then the Hexadecimal value to be written. 1t will keep prompting you until you
enter a 99 to return to the main menu.

A-14

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.14 Reset Board/Test Registers Menu

ResetBoard/Test registers (4 From Main Menu)
Do you wish to Reset Board(R) or Test Registers(T)...
PIFS Reset Test

No Pifs Reset Errors

PIFS Write Register Test(all 1%s)
No Pifs Register Write 1"s Errors

PIFS Write Register Test(all 0°s)
No Pifs Register Write O0°s Errors

ReedSolomon Reset Test

No ReedSolomon Reset Errors

ReedSolomon Write Register Test(all 1°s)

No Reed Solomon Register Write 1°"s Errors

ReedSolomon Write Register Test(all 0°s)
No Reed Solomon Register Write 0°"s Errors

Figure A-13. Reset Board/Test Registers Menu

Entering a 4 from the main menu brings you into the Reset Board/Test Registers Menu. This
allows you to either Reset the entire board or test the registers.

If Risentered, you will completely reset the board (All chips, FIFO'’s, and configuration).

If aT isentered, the program reads and writes the PIFS and RS registers and displays the resullts.
Y ou may retest the PIFS or RS or Both by entering P, R, or B.

If you Reset or Test, you must reload the configuration of the board, option 3 from main menu.

Entering a Q will return you to the main menu.

A-15

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.15 Display FIFO Buffer Menu

Enter Which Fifo Buffer to Display(1-4) *?
Fifo 2 Buffer Dump, contains 4096 (1000Hex)Longwords

000000 lacffcld 09910000 18000000 c000003d aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
000008 aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
000010 aaaaaaaa aaaaaaaa aaaaaaaa aaaa0001 c0000025 bbbbbbbb bbbbbbbb bbbbbbbb
000018 bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb bbbb07ff c0000043
000020 55555555 55555555 55555555 55555555 55555555 55555555 55555555 55555555
000028 55555555 55555555 55555555 55555555 55555555 55555555 55555555 55555555
000030 5555552e deadbeef 0aae9729 7414060 d96c4f80 36f1839d 5d534904 2280e6el
000038 69985a6e f6933baa lacffcld 09930100 18000005 c000000d fFfFfffff FFFFFfff
000040 fFFfffff FFFFO006 c0000004 11111111 110007cO 00000F22 22222222 22222222
000048 22222222 22222200 08c00000 1a333333 33333333 33333333 33333333 33333333
000050 33333333 33333333 0009c000 00254444 AAAAAAAAL AAAAAAAL AAAAAAAL AAAA4444
000058 44444444 AA444444 A4444444 A4444444 44444444 07FFcO000 00315555 55555555
000060 55555555 55555555 55555555 55555555 55555555 55555555 55555555 55555555
000068 55555555 55555555 5555555c deadbeef 98607ee6 b56fede6 2b8lcc35 1lcaebb05
000070 6b5fe989 e30d3c8d e8959db0 f8a3bde7 lacffcld 09950200 1800040Ff c0000417
000078 66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666666
000080 66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666666
000088 66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666666
000090 66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666666
000098 66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666666
0000a0 66666666 66666666 66666666 66666666 66666666 deadbeef €3531838 9a0alOldb
0000a8 2852837c cc7d0a6d a3d491fb 5f4b9a30 cef3d60f ddcb5172 lacffcld 09970300
0000b0O 18000400 c0000417 abababab abababab abababab abababab abababab abababab
0000b8 abababab abababab abababab abababab abababab abababab abababab abababab
0000c0 abababab abababab abababab abababab abababab abababab abababab abababab
0000c8 abababab abababab abababab abababab abababab abababab abababab abababab
0000d0 abababab abababab abababab abababab abababab abababab abababab abababab
0000d8 abababab abababab abababab abababab abababab abababab abababab deadbeef
0000e0 b463448F 2ed4dc20 cccedaf7 ba3ael76 abd37dea d558b320 a9289c93 166a5fbc
0000e8 lacffcld 09990400 18000404 c0000417 adadadad adadadad adadadad adadadad
0000f0 adadadad adadadad adadadad adadadad adadadad adadadad adadadad adadadad

Enter any character to continue, [Q]uit

Figure A-14. Display FIFO Buffer Menu

Entering a G from the main menu brings you into the Display FIFO Buffer. You must have
dumped the FIFO’ s using the H option of the main menu before displaying the buffer. Thiswill
allow you to display 1 of the 4 data buffers.

A-16

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.16 Dump All FIFO’s To Memory Display

Dump All Fifo"s to Memory (H from main Menu)

FiFo Dump Routine

0 Longwords Reads From Fifo 1, O Frames Read
4096 Longwords Reads From Fifo 2, 70 Frames Read
4096 Longwords Reads From Fifo 3, 70 Frames Read
4096 Longwords Reads From Fifo 4, 70 Frames Read

Enter any character to continue...

Figure A-15. Dump All FIFO’s to Memory Display

Entering a H from the main menu causes all four data FIFO’ s to be dumped to their data buffers.
They may than be displayed using the G option (Display data Buffer x) from the main menu.

A-17

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.17 Display PCI Configuration Space

Display Configuration Space (6 from Main Menu)

Pci Configuration Data: ----—-———-————————-

Register Value

Vendor Id: 0x000011b0
Device 1d: 0x00000004
Command: 0x00000107
Status: 0x00000003
Rev 1d: 0x000000c0
Proglf: 0x00000002
SubClass: 0x000000fF
BaseClass: 0x00000000
CacheLine: 0x000000f8
Latency: 0x00000000
Header Type: 0x00000000
BIST: 0x00000001
Base Reg[0]: 0x40000000
Base Reg[1]: 0x00000000
Base Reg[2]: 0x00000000
Base Reg[3]: 0x00000000
Base Reg[4]: 0x00000000
Base Reg[5]: 0x00000000
Rom Base: 0x00000000

Interrupt Line: 0x00000043
Interrupt Pin: 0x00000000
Min Grant: 0x00000000
Max Latency: 0x00000010

Press C to see the V3 Configuration Data.

Figure A-16. Display PCI Configuration Space

This menu option allows a user to view the current standard PCI configuration registers on the
VI62PBC. Pressing any key other than ‘c’ returns to the main menu. Pressing ‘c’ brings up the
first of two V962PBC-specific displays, shown in the next two figures.

A-18

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

V3 Configuration Data: -----———————————————————

Register Offset Value

Pci_MapO 0x40 - 0x43 0x00000000
Pci_Mapl 0x44 - 0x47 0x00000000
Pci_Int_Stat 0x48 - 0x4B 0x03020008
Pci_Int_Cfg 0x4C - Ox4F 0x00000000
Lb_BaseO 0x54 - 0x57 0x50000009
Lb_Basel 0x58 - 0Ox5B 0x40060000
Lb_MapO OX5E - Ox5F 0x00005006
Lb_Map1 0x62 - 0x63 0x00000000
Lb_lo_Base OXB6E - Ox6F 0x00000000
Fifo_Cfg 0x70 - Ox71 0x00000505
Fifo_Priority 0x72 - 0x73 0x00000000
Fifo_Stat 0x74 - 0Ox75 0x0000c400
Lb_lIstat 0x76 0x00000000
Lb_Imask ox77 0x00000000
System 0x78 - 0Ox79 0x00000066
Lb_Cfg 0x7B 0x00000000
Dma_Pci_AddrO 0x80 - 0x83 0x00000000
Dma_Local_AddrO 0x84 - 0x87 0x00000000
Dma_LengthO_Lw 0x88 - 0x89 0x00000000
Dma_LengthO_Hb Ox8A 0x00000000
Dma_CsrO 0x8B 0x00000000
Dma_Ctlb_AdroO 0x8C - Ox8F 0x00000000
Dma_Pci_Addril 0x90 - 0x93 0x00000000
Dma_Local_Addrl 0x94 - 0x97 0x00000000
Dma_Lengthl_Lw 0x98 - 0x99 0x00000000
Dma_Lengthl_Hb Ox9A 0x00000000
Dma_Csril 0x9B 0x00000000
Dma_Ctlb_Adril 0x9C - Ox9F 0x00000000

Press C to see the V3 Configuration Data.

Figure A-17. Display V962PBC-Specific PCI Configuration Registers (1
of 2)

Pressing any key other than ‘c’ will return to the main menu. Pressing a‘c’ will display the
second of two V962PBC-specific PCl configuration register screens, as shown in the next figure.

A-19

PCI10FR Windows NT Device Driver Software Definition Document

521-S/W-058

V3 Configuration Data:

Register Offs
Mail_DataO 0xCO
Mail_Datal 0xC1
Mail_Data2 0xC2
Mail_Data3 0xC3
Mail_Data4 0xC4
Mail_Data5 0xC5
Mail_Data6 0xC6
Mail_Data7 0xC7
Mail_Data8 0xC8
Mail_Data9 0xC9
Mail_DatalO OxCA
Mail_Datall 0xCB
Mail_Datal2 0xCC
Mail_Datal3 0xCD
Mail_Datal4 OxCE
Mail_Datal5 OxCF
Pci_Mail_lewr 0xDO
Pci_Mail_lerd 0xD2
Lb_Mail_lewr 0xD4
Lb_Mail_lerd 0xD6
Mail_Wr_Stat 0xD8
Mail_Rd_Stat OxDA

et

- 0xD1
- 0xD3
- 0xD5
- OxD7

- 0xD9
- OxDB

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000

Figure A-18. Display V962PBC-Specific PCI Configuration Registers (2

of 2)

Pressing any key returns to the main menu.

A-20

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.18 View/Set FIFO Flags Menu

View/Set FIFO Flags (J from Main Menu)

Current FIFO Flag Settings

FIFO Bank 1 FIFO Bank 2 FIFO Bank 3 FIFO Bank 4 FIFO Fd Lnk

AE 0 0 0 0 0
AF 0 0 0 0 0
(1) FIFO Bank 1 (4) FIFO Bank 4
(2) FIFO Bank 2 (5) FIFO Fd Lnk
(3) FIFO Bank 3 (6) Cancel/Quit

Choose a FIFO Bank to change:

Figure A-19. View/Set FIFO Flags Menu

This menu allows the user to set the Programmable Flag Registers for the four data FIFOs and the
Forward Link FIFO.

After entering the FIFO number, you will be prompted for the Almost Empty value then the Almost
Full Value.

Entering a 6 will return you to the main menu.

A-21

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.19 Read Reed-Solomon Routing Table RAM

Read RS Routing Table Ram (A from Main Menu)

Enter any character to continue, [Q]uit
002100 fOofofofo fOFOFOFO FOFOFOFO FOFOFOFO
002140 fofofofo fOfOfOfO FOFOFOFO FOFOFOFO
002180 fOofofofo FOFOFOFO FOFOFOFO FOFOFOFO
0021cO0 fofofofo fOFOfOFfO FOFOFOFO FOFOFOTO
002200 fOofofofo FOFOFOFO FOFOFOFO FOFOFOFO
002240 fofofofo fOfOfOfO FOFOFOFO FOFOFOFO
002280 fOofofofo FOFOFOFO FOFOFOFO FOFOFOFO
0022c0 fofofofOo fOFOFfOFfO FOFOFOFO FOFOFOFO
002300 fOofofofo FOFOFOFO FOFOFOFO FOFOFOFO
002340 fofofofo fOfOfOfO FOFOFOFO FOFOFOFO
002380 fOofofofo FOFOFOFO FOFOFOFO FOFOFOFO
0023c0 fofofofo fOFOFfOFfO FOFOFOFO FOFOFOTO
002400 fofofofo fOFOFOFO FOFOFOFO FOFOFOFO
002440 fofofofo fOfOfOfO FOFOFOFO FOFOFOFO
002480 fOofofofo fOFOFOFfO FOFOFOFO FOFOFOFO
0024c0 fofofofo fOFfOfOfO FOFOFOFO FOFOFOFO
002500 fOofofofOo FOFOFOFO FOFOFOFO FOFOFOFO
002540 fofofofo fOFfOfOfO FOFOFOFO FOFOFOFO
002580 fOofofofo FOFOFOFO FOFOFOFO FOFOFOFO
0025c0 fOofofofo fOFOfOfO FOFOFOFO FOFOFOFO
002600 fOfOfOfO FOFOFOFO FOFOFOFO FOFOFOFO
002640 f070f070 fObOfObO fObOFOdO FOFOFOeO _* * _* * * * * *
002680 fOfOfOofO FOFOFOFO FOFOFOFO FOFOFOFO
0026c0 fOfOfOofO fOFOFOFO FOFOFOFO FOFOFOFO
002700 fOofofofo fOFOFOFO FOFOFOFO FOFOFOFO
002740 fofofofo fOFfOfOfO FOFOFOFO FOFOFOFO
002780 fOfofofOo FOFOFOFO FOFOFOFO FOFOFOFO
0027cO0 fOofofofOo fOFOFfOFfO FOFOFOFO FOFOFOFO
002800 fOofofofo fOFOFOFO FOFOFOFO FOFOFOFO
002840 fofofofo fOFfOfOfO FOFOFOFO FOFOFOFO
002880 fOofofofo fOFOFOFO FOFOFOFO FOFOFOFO
0028c0 fofofofo fOFOFfOFfO FOFOFOFO FOFOFOFO
002900 fOofofofOo FOFOFOFO FOFOFOFO FOFOFOFO
Enter any character to continue, [Q]uit

Figure A-20. Read Reed-Solomon Routing Table RAM

Entering an A from the main menu allows you to display the RS Routing table.
A value of $F0 means that no FIFOs are selected for RS routing of the data.

A valueof $70 FIFO 1 will receive data.
A value of $b0 FIFO 2 will receive data.
A value of $d0 FIFO 3 will receive data
A value of $e0 FIFO 4 will receive data.
A value of $00 all FIFOswill receive datafrom the RS chip.

A-22

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.20 Load Reed-Solomon Routing Table RAM

Load Routing Table Ram(B from main Menu)

Load Routing Table

(1) FIFO 1 (3) FIFO 3 (5) All FIFO"s
(2) FIFO 2 (4) FIFO 4 (6) Cancel

Select the FIFO(s) to which all data will be routed:

Figure A-21. Load Reed-Solomon Routing Table RAM

Entering a B from the main menu allows you to setup the routing table to send data to different
FIFOs or all FIFOs.

A.21 Set Routing Table Addresses

Entering an L from the main menu brings you into the Set Routing Address Routine. This alows
the user to set up the Reed-Solomon to route datainto any FIFO depending on the Version,
Spacecraft 1D, and VCID of each frame.

Y ou will be prompted for the CCSDS Version (1or2), Spacecraft ID (0-1024), each VCID, and
which FIFO will receive the data.

Entering a Q returns you to the main menu.

A.22 Save Configuration

After any changes have been made, the configuration of the card should be saved in a file.
Selecting a 2 from the main menu prompts you for afilename. Y ou enter a name and an extension
of “.CNF" will be appended to the name (filename.CNF).

Y ou may also save the configuration when exiting the DEBUGGER by entering * (<SHIFT> 6).
This saves the configuration in afile called config.cnf. If you exit by entering & (<SHIFT> 7),
the DEBUGGER will not save the configuration in afile.

A.23 Load Configuration

Y ou may load any configuration file you previously saved by selecting a 3 from the main menu.
You will be prompted for a configuration filename. You enter the filename WITHOUT the
extension(filename). If the system findsthefile, it will load it. If it does not find the file, you will
get an error message and an Audible BEEP.

A-23

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.24 File Scan Menu

File Scan Menu (U from Main Menu)

Scan Data File Menu

X *kk

*x 3
*x Kk Kk
** [R]ead File to Buffer [QJuickScan Buffer falaled
*x Kk Kk
** [D]isplay Buffer [S]1can_DumpBuffer falalel
*x Kk Kk
** [Z]ero Buffer [O]pen Data File falalel
*x Kk Kk
** [C]lose File scan[E]ntireFile Fxx
*x Kk Kk
** s[K]ip File Reads re[Wlind File falalel
*x Kk Kk
** [P]arameter Change [~] Close File Return to Main Menu Fxx
*x Kk Kk
** Display Con[F]liguration Space Search For Pattern [X] Fxx
*x *kk
*x E

X *k Kk

Select next command: E

Figure A-22. File Scan Menu

Entering a U from the main menu brings you into the File Scan Menu. This menu alows you to
Scan adatafile for Frame Size errors and Master Channel sequence Count errors. After entering
this menu, select the P option to Change Parameters.

A-24

PCI10FR Windows NT Device Driver Software Definition Document

A.25 File Scan Parameter Menu

521-S/W-058

Parameter values

[11
[2]
31
[4]1
[5]1
6]

Frame Size = 232

Sequence Count Start = 6

Sequence Count Rollover = 7f

Stop Quick Scan Display every 1000 Lines
Change Sync Pattern lacffcld

Max Errors Allowed Before Pausing ..25

Enter selection to change or [QJuit

Figure A-23. File Scan Parameter Menu

With this menu you can change Frame Size [1], Frame Sync Pattern [5], Maximum Errors allowed
before pause [6], and stop Quick scan display after a specified number of lines[4]. Options|[2]
and [3] are not implemented. After changing parameters, enter Q to return to Scan File Menu.

Y ou may now open adatafile[O]. If thefileislocated, it will be opened and the program will wait
for your next entry. If the file cannot be found, you will get an error message and a warning Beep.

A-25

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.26 Scan Entire File Display

Scan Entire File (E from Scan File menu)

10000 Frames Read From File
20000 Frames Read From File
30000 Frames Read From File
40000 Frames Read From File
50000 Frames Read From File
51200 Frames Read From File
1200 Syncs Found, Read 6

2969600 Longwords Read with 51200 Syncs Found
Enter any character to continue...

Figure A-24. Scan Entire File Display

You may Scan the entirefile [E]. Thisoption reads in the file, checks for proper frame size and
sequence counts. It displays the number of syncsfound and any errors found.

A-26

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.27 Quick Scan Buffer Display

Quick Scan Buffer(Q from Scab Buffer Menu)

Scan Buffer Routine..... Enter 1 to Display ,0 noDisplay
Address First 24 Bytes of Frame Size (Bytes) Sync#
004C8E70.. lacffcld 09955011 1fff6666 66666666 66666666 66666666 0 ### 51 1

004C8F58.. lacffcld 09975111 1fffabab abababab abababab abababab 232 2
004C9040.. lacffcld 09995211 1fffadad adadadad adadadad adadadad 232 3
004C9128.. lacffcld 099b5314 1fffafaf afafafaf afafafaf afafafaf 232 4
004C9210.. lacffcld 09955412 1fff6666 66666666 66666666 66666666 232 5
004C92F8.. lacffcld 09975512 1fffabab abababab abababab abababab 232 6
004C93EO0.. lacffcld 09995612 1fffadad adadadad adadadad adadadad 232 7
004C94C8.. lacffcld 099b5715 187cafaf afafafaf afafafaf afafafaf 232 8
004C95B0.. lacffcld 09955813 187c6666 66666666 66666666 66666666 232 9

004C9698.. lacffcld 09975913 187cabab abababab abababab abababab 232 10
004C9780.. lacffcld 09995al3 187cadad adadadad adadadad adadadad 232 11
004C9868.. lacffcld 099b5b16 1fff5555 55555555 55555555 55555555 232 12
004C9950.. lacffcld 09955c14 1fff5555 55555555 55555555 55555555 232 13
004C9A38.. lacffcld 09975d14 1fff5555 55555555 55555555 55555555 232 14
004C9B20.. lacffcld 09995e14 1fff5555 55555555 55555555 55555555 232 15
004C9C08.. lacffcld 099b5F17 1fffFf5555 55555555 55555555 55555555 232 16
004C9CFO.. lacffcld 09916003 18000000 ¢c003003d aaaaaaaa aaaaaaaa 232 17
004C9DD8.. lacffcld 09936103 18000005 ¢003000d TFFFfffff FFFFffff 232 18
004C9ECO.. lacffcld 09956215 1800040f c0030417 66666666 66666666 232 19
004C9FA8.. lacffcld 09976315 18000400 ¢c0030417 abababab abababab 232 20
004CA090.. lacffcld 09996415 18000404 c0030417 adadadad adadadad 232 21
004CA178.. lacffcld 099b6518 18000424 c0030417 afafafaf afafafaf 232 22
004CA260.. lacffcld 099b6619 1fffafaf afafafaf afafafaf afafafaf 232 23
004CA348.. lacffcld 099f6703 1ffe5555 55555555 55555555 55555555 232 24
004CA430.. lacffcld 09956816 1fff6666 66666666 66666666 66666666 232 25

Figure A-25. Quick Scan Buffer Display

Y ou may do aQuick Scan [Q] on thefile. This checks the frame size sequence counts and displays
thefirst 24 bytes of every frame.

You may Scan [S] the data buffer. Thisreadsin arecord, scans the record for frame syncs, and
allowsyou to display any frame in that record.

Y ou may Display [D] the datain the scan buffer.
Y ou may skip [K] over frames, rewind [W] thefile, or read [R] arecord from thefile.
Finally you may search for any 4-byte pattern in the record.

A-27

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.28 Data Status Display

Data Status (V from main menu)u
Parameter values
[1] Display Statistics
[2] Zero Status Structure
[3] Sort VCIDs Int320 Files
[4]

Enter selection to change or [QJuit 1

Channel MC Count MC Seq Errors
1 52880 413
2 0 0
3 0 0
4 0 0
VCID Channel_1 Channel_2 Channel_3 Channel_4
Count SeqErr Count SegErr Count SeqErr Count SeqErr
0 1653 413 0 0 0 0 0 0
1 1653 413 0 0 0 0 0 0
2 11567 413 0 0 0 0 0 0
3 11567 413 0 0 0 0 0 0
4 11567 413 0 0 0 0 0 0
5 13220 413 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 1653 413 0 0 0 0 0 0
Total VCID"s = 52880
Total Vcid Seq Errors = 2891

Figure A-26. Data Status Display

Thisentry alowsyou to display [1] the VCID statistics for thefile just received. You can zero [2]
these statistics, and you can sort [3] the VCID’ sinto separate files.

A-28

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

A.29 Data Channel Menu and Display

Channel Information Channel 1 Channel 2 Channel 3 Channel 4
Priority High Undefined Undefined Undefined
Data Type CCSDS Data Undefined Undefined Undefined
Channel Open Status Open Closed Closed Closed
Total Data Frame Size 232 0 0 0
Padding Size 0 0 0 0
Base Buffer Pointer x00810020 Xx00000000 Xx00000000 Xx00000000
Current Event Block Pointer x00810020 x00000000 x00000000 x00000000
Buffer Size (number of bytes) 4176000 0 0 0
ulongs Transferred per DMA 1740 0 0 0
DMA Blocks Per Event Block 150 0 0 0
Event Blocks per Buffer 4 0 0 0
Number Ulong®s on Flush 98600 0 0 0
Cummulative Ulong®"s on Flush 98600 0 0 0
Total Frames Read 51200 0 0 0
Extra Ulongs®s read 0 0 0 0
Number Buffer Overflows 0 0 0 0
(0) Open data channel (U) Update Display

(F) Flush all data channels (L) Loopback Test 232

(C) Close all data channels (Q) Quit

Enter selection:

Figure A-27. Data Channel Menu and Display

This menu displays information about each of the four data channels, and allow a user to open a
data channel (O), flush all data channels (F), and close al data channels (C). For convenience, one
can press (U) to update the display. The (L) option actually inserts a 232-byte frame directly into
the PIFS chip. If therest of the board is set up correctly, this frame will generate an interrupt and
will single step testing of the data channels and interrupts.

The (Q) option returns to the main menu.

A-29

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix B.
PCI10FR: Programming the FIFO Flags

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix B.PCI10FR: Programming the FIFO Flags

B.1 Introduction

Section B.2 contains an email message from Ken Winiecki on July 19, 1996 about programming
the FIFO flags. Mr. Winiecki is one of the hardware designers of the PCI 10FR Prototype Board,
and the primary hardware designer for the new RLPC Board.

B.2 Programming the FIFO Flags

The following information pertains to setting the programmable almost-full and almost-empty flag
offsets ("PAEFQ" and "PAFFQO") of the IDT72241 FIFO memory chips used on the PCI10FR
card for stacking and routing the data output from the RSEDC chip (return-link data) and for
buffering the forward-link data. These offsets default at reset to 7, meaning the PAEFs will assert
when the number of filled bytes in each FIFO drops to 7, and the PAFFs will assert when the
number of empty bytesin each FIFO dropsto 7.

The PCI10FR has 16 byte-wide FIFOs arranged in 4 banks of 4. The stream of data bytes
normally comes from the RSEDC and is latched by the bank(s) normally selected by the RSEDC.
In order to provide ease of programming and testing of the FIFOs, the PCI10FR also provides a
data path from the local bus to the FIFO banks and FIFO bank selection through a special board
address 0x280000. Data bits 7-0 carry the data byte, and data bits 15-12 select the FIFO bank(s)
to latch it; other data bits don't matter. In particular, Bank 1 is selected if bit 12is0, Bank 2 is
selected if bit 13is0, Bank 3isselected if bit 14 is0, and Bank 4 is selected if bit 15is0; multiple
banks may be chosen to latch the same data.

Within a bank, board logic interleaves the sequential data bytes among the 4 FIFOs to form the
upper-upper-byte, upper-middle-byte, lower-middle-byte, and lower-lower-byte of a 32-bit word.
Therefore, to write the same byte to all 4 FIFOsin abank, it must be written 4 times sequentially,
and to write two bytes sequentially to asingle FIFO, the first byte must be writtento all 4 FIFOsin
the bank before the second byte can be written.

Each FIFO chip has 4 byte-wide programmable offset registers which are filled sequentially from
the data stream when a special load signal is asserted. Thisisaccomplished on a per-bank basis
through the Main Board Control Register. In particular, all 4 FIFOs of bank 1 are in load-mode if
bit 25is0, al 4 FIFOs of bank 2 are in load-mode if bit 23 is0, al 4 FIFOs of bank 3 are in load-
mode if bit 21is0, and all 4 FIFOs of bank 4 are in load-mode if bit 19 is O; other bits function as
specified in the documentation.

Thefirst offset register pair forms the 12-bit PAEFO and the second pair forms the 12-bit PAFFO.
In particular, bits 7-0 of byte 1 are bits 7-0 of the PAEFO, bits 3-0 of byte 2 are bits 11-8 of the
PAEFO, bits 7-0 of byte 3 are bits 7-0 of the PAFFO, and bits 3-0 of byte 4 are bits 11-8 of the
PAFFO; other bits don't matter. Note that since the four FIFOs within a bank are arranged with
their outputs in parallel to form a 32-bit word, all PAEFOs within abank must be programmed the
same, as must all PAFFOs. Also note that the offsets describe both a number of bytes of asingle
FIFO aswell as anumber of 32-bit words of the bank (1/4 of the number of bytes in the bank).

B-1

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

WARNING

Any data output from the RSEDC during FIFO flag offset
programming will be lost, so either the setup should occur before
the start of the data session (preferrable), or the RSEDC should be
suspended during the setup (hoping the PIFS-to-RSEDC FIFO can
absorb the blocked data). Also, any data read from the FIFOs
during FIFO flag offset programming will only be the contents of
the offset registers, not data.

For example, say we want the PAEFs of FIFO banks 1 and 3 to assert when the number of filled
bytes per bank drops to 256, and the PAFFs of those same banks to assert when the number of
empty bytes per bank dropsto 1 K. To program banks 1 and 3, bits 25 and 21 of the Main Board
Control Register must be set to 0 (and the other bits set appropriately). 256 bytesin abank is 64
(0x040) bytesin each FIFO, so PAEFO bits 7-0 are 0x40 and bits 11-8 are 0x0. Similarly, 1 KB
in abank is 256 (0x100) bytes in each FIFO, so PAFFO bits 7-0 are 0x00 and bits 11-8 are Ox1.
FIFO banks 1 and 3 correspond with data bits 12 and 14 being 0 (and bits 13 and 15 being 1),
whichis OXA000. All PCI10FR board accesses are 32-hit, so the programming sequenceis.

Action Address Daa

write 0x000000 OxE5DD0000
write 0x280000 O0x0000A 040
write 0x280000 O0x0000A 040
write 0x280000 O0x0000A 040
write 0x280000 O0x0000A 040
write 0x280000 0x0000A 000
write 0x280000 O0x0000A 000
write 0x280000 O0x0000A 000
write 0x280000 0x0000A 000
write 0x280000 O0x0000A 000
write 0x280000 O0x0000A 000
write 0x280000 0x0000A 000
write 0x280000 O0x0000A 000
write 0x280000 O0x0000A 001
write 0x280000 0x0000A 001
write 0x280000 O0x0000A 001
write 0x280000 O0x0000A 001
write 0x000000 OxE7FD0000

Reading the offset registers is much simpler because it only entails setting the appropriate load-
mode bits in the Main Board Control Register (just like for writing) and then performing standard
FIFO-bank reads. Note that the 4 FIFOs within a bank are all read simultaneously in a 32-bit
word, so only 4 reads are necessary to acquire all 16 offset registers of a FIFO bank.

For example, say we want to read the offset registers of FIFO bank 2. This means that bit 23 of
the Main Board Control Register must be set to 0 (and the other bits set appropriately), and the data
must be read from board address 0xA00000.

B-2

PCI10FR Windows NT Device Driver Software Definition Document

Action Address

write 0x000000
read 0xA 00000
read 0xA 00000
read 0xA 00000
read 0xA 00000
write 0x000000

Data

OXE77D0000
(al 4 PAEFO bits 7-0)
(al 4 PAEFO bits 11-8)
(al 4 PAFFO bits 7-0)
(all 4 PAFFO bits 11-8)
OXE7FD0000

WARNING

521-S/W-058

Any data output from the RSEDC during FIFO flag offset reading
will be written into the offset registers, NOT into the data FIFO, so
if the RSEDC is outputting data, it MUST be suspended for the
duration of the reading.

Programming the flag offsets of the forward-link FIFO is much simpler than for the return-link
FIFOs because it is only one chip instead of a bank of 4. The load-mode bit in the Main Board
Control Register ishit 2; the write address for offset programming data is the same as for forward-
link data, 0OXD000QO; and the upper 24 bits of the write data don't matter. The PCI10FR does not

support reading the forward-link FIFO, either data or flag offsets.

B-3

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix C.
CMOS SyncFIFO Specifications

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix D.
Dual Programmable Clock Generator
Specifications

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix E.
Dual Programmable Clock Generator
Application Note

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix F.
DS1620 Digital Thermometer and Thermostat
Specifications

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix G.
DS1620 Digital Thermometer and Thermostat
Application Note

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix H.
Atmel Serial EEPROM
Specifications

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Appendix I.
VI962PBC Stepping Change Notifications

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

Abbreviations and Acronyms

AN Application Note

APl Application Program Interface

ASIC Application-Specific Integrated Circuit

BSS Board Support Subsystem

CCSDS Consultative Committee for Space Data Systems
CPU Central Processing Unit

DCN Documentation Change Notice

DDK Device Driver Kit

DFD Data Flow Diagram

DMA Direct Memory Access

DPC Deferred Procedure Call

DSDP Desktop Satellite Data Processor

EDC Error Detection and Correction

EEPROM Electrically-Erasable Programmable Read-Only Memory
FIFO First-In, First-Out

GOES Geosynchronous Orbiting Earth Satellite

GSFC Goddard Space Flight Center

HDD Hardware Definition Document

/O [nput/Output

IOCTL I nput/Output Control

IRP I/0O Request Packet

ISR Interrupt Service Routine

LED Light Emitting Diode

NASA National Aeronautics and Space Administration
NCO Numerically-Controlled Oscillator

NOAA Nationa Oceanic and Atmospheric Administration

6-1

PCI10FR Windows NT Device Driver Software Definition Document 521-S/\W-058

NT

P2S

PBC

PCI
PCI10FR

PIFS
PLD

PN
RAM
RLPC
RS
RSEDC
SCS|

SDK
SOMO
SP
TDM
VCID
VLS
VME

New Technology (asin Windows NT)
Parallel-to-Seridl

PCI Bridge Chip

Periphera Component I nterconnect

PCI 10 Mbps Frame Synchronization Reed-Solomon Error Detection and
Correction board

Parallel Integrated Frame Synchronizer
Programmable Logic Device
Pseudo-Noise

Random Access Memory

Return Link Processor Card
Reed-Solomon

Reed-Solomon Error Detection and Correction
Small Computer System Interface
Software Definition Document

Software Development Kit

System Operation and Management Office
Service Processor

Time Divison Multiplexed

Virtual Channel Identifier's

Very Large Scale Integration

VersaModule Eurocard

